Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.063
Filter
1.
Chinese Journal of Biotechnology ; (12): 53-62, 2024.
Article in Chinese | WPRIM | ID: wpr-1008079

ABSTRACT

Abiotic stresses substantially affect the growth and development of plants. Plants have evolved multiple strategies to cope with the environmental stresses, among which transcription factors play an important role in regulating the tolerance to abiotic stresses. Basic leucine zipper transcription factors (bZIP) are one of the largest gene families. The stability and activity of bZIP transcription factors could be regulated by different post-translational modifications (PTMs) in response to various intracellular or extracellular stresses. This paper introduces the structural feature and classification of bZIP transcription factors, followed by summarizing the PTMs of bZIP transcription factors, such as phosphorylation, ubiquitination and small ubiquitin-like modifier (SUMO) modification, in response to abiotic stresses. In addition, future perspectives were prospected, which may facilitate cultivating excellent stress-resistant crop varieties by regulating the PTMs of bZIP transcription factors.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Protein Processing, Post-Translational , Phosphorylation , Transcription Factors/genetics , Stress, Physiological/genetics
2.
Chinese Journal of Biologicals ; (12): 227-233, 2024.
Article in Chinese | WPRIM | ID: wpr-1006863

ABSTRACT

@#Acquired immune deficiency syndrome,or AIDS,has been a major infectious disease that troubles the public health in a global scale. Human immunodeficiency virus type 1(HIV-1)is the causative reagent responsible for AIDS development. Even though the highly active anti-retroviral therapy(HAART,or the cocktail therapy)that has been widely applied could effectively suppress the infection and replication of HIV-1,the infected people suffer from other related diseases,such as the HIV-associated neurocognitive disorder(HAND). This paper mainly focused on the function of an important regulatory protein of HIV-1,trans-activator of transcription(Tat),and its correlation with HIV-1 replication and HAND development,so as to clarify the importance of developing anti-AIDS drugs targeting Tat protein

3.
China Pharmacy ; (12): 296-303, 2024.
Article in Chinese | WPRIM | ID: wpr-1006613

ABSTRACT

OBJECTIVE To investigate the effect of berberine on ferroptosis in MG63 osteosarcoma cells and its mechanism. METHODS Using cells without drug treatment as control, the cell viability, proliferation, the related indexes of ferroptosis [nuclear proliferation associated-antigen (Ki67), mitochondrial ultrastructure, ferric ion (Fe2+), reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH)], the protein expression of signal transducer and activator of transcription 3 (STAT3), tumor protein 53 (p53), and solute carrier family 7 member 11 (SLC7A11) were detected after being treated with different concentrations of berberine. Cells were transfected with p53 siRNA and then assigned to the control group, p53 siRNA group, berberine group, and p53 siRNA+berberine group to explore the role of p53 in berberine-induced ferroptosis. After 24 h incubation with 10.0 μmol/L berberine, the protein expressions of p53 and SLC7A11, the levels of mitochondrial membrane potential, GSH, and MDA content were determined. Cells were transfected with STAT3 overexpressed plasmid and then assigned to the control group, berberine group, STAT3 group, and STAT3+berberine group to explore the effect of STAT3 on the regulation of the p53/SLC7A11 pathway. After 24 h incubation with 10 μmol/L berberine, the protein expressions of p-STAT3, STAT3, p53, and SLC7A11 were detected. RESULTS Compared with the control cell, the concentrations of 2.5, 5.0 and 10.0 μmol/L berberine could reduce the cell viability and expression of Ki67, and induce the morphological changes in ferroptosis-related mitochondria, increase the levels of Fe2+, ROS and MDA, and the protein expression of p53, reduce the level of GSH, the binding activity of STAT3 with DNA, and the protein expressions of p-STAT3 and SLC7A11; the above differences were statistically significant (P< 0.05 or P<0.01). Compared with the berberine group,significantly down-regulated p53 protein expression and MDA level, up-regulated SLC7A11 protein expression, and increased mitochondrial membrane potential and GSH level were observed in the p53 siRNA+berberine group (P<0.01). Compared with the berberine group, the protein expressions of p-STAT3, STAT3, and SLC7A11 in the STAT3+berberine group were significantly increased (P<0.01), while the protein expression of p53 was significantly decreased (P<0.01). CONCLUSIONS Berberine can induce the ferroptosis of MG63 cells by mediating STAT3/p53/SLC7A11 signaling pathway.

4.
Chinese Journal of Biologicals ; (12): 43-50+64, 2024.
Article in Chinese | WPRIM | ID: wpr-1006195

ABSTRACT

@#Objective To study the effect of ankyrin repeat domain 49(ANKRD49)on the migration of human lung adenocarcinoma cell line NCI-H1299 and its mechanism.Methods NCI-H1299 cells were infected with lentivirus vector carrying ANKRD49 gene and shRNA targeting ANKRD49 to construct the cell models stably overexpressing and knocking down ANKRD49. Meanwhile,the control cell models infected with empty lentivirus vector and lentivirus vector with scramble sequences were constructed respectively. The expression levels of ANKRD49 mRNA and protein were detected by real-time fluorescence quantitative PCR and Western blot. The effect of ANKRD49 on cell migration was measured by scratch test. The mRNA and protein levels of matrix metalloproteinase(MMP)-2/9 and tissue inhibitor of metalloproteinase(TIMP)-1/2 were detected by real-time fluorescence quantitative PCR and Western blot. The protein expression levels of p65,p-p65,IκBα and p-IκBα were detected by Western blot.Results The levels of ANKRD49 mRNA and protein in the ANKRD49 overexpression group were significantly higher than those in the control group(t = 70. 02 and 45. 68,respectively,each P < 0. 001). Compared with the control group,the migration ability of cells in the ANKRD49 overexpression group significantly increased at 24 h and 48 h(t = 5. 343 and 3. 282,P = 0. 005 9 and 0. 030 4,respectively);The mRNA transcription levels and protein expression levels of MMP-2 and MMP-9 significantly increased(t = 9. 304 and 6. 193,P =0. 000 7 and 0. 003 5,respectively),while the mRNA and protein expression of TIMP-1 and TIMP-2 decreased significantly(t = 3. 858 and 3. 517,P = 0. 018 2 and 0. 024 5,respectively),and the values of MMP-2/TIMP-1 and MMP-9/TIMP-2 significantly increased(t = 17. 7 and 9. 682,P < 0. 001 and < 0. 01,respectively);The expression of p-p65 and pIκBα significantly increased,the total protein levels of p65 and IκBα showed no obvious change,and the values of p-p65/p65 and p-IκBα/IκBα significantly increased(t = 3. 962 and 5. 370,P = 0. 016 7 and 0. 005 8,respectively). However,knocking down of ANKRD49 presented the opposite results.Conclusion ANKRD49 promotes the migration of NCI-H1299cells by enhan-cing the expression of MMP-2/9,the values of MMP-9/TIMP-1 and MMP-2/TIMP-2 via activating NF-κB/p65 signa-ling pathway.

5.
China Pharmacy ; (12): 166-171, 2024.
Article in Chinese | WPRIM | ID: wpr-1006173

ABSTRACT

OBJECTIVE To investigate the improvement effects of glycyrrhizin (GL) on Helicobacter pylori (HP)-associated gastritis in rats and its mechanism. METHODS HP-associated gastritis rat model was induced by inoculating with 1×109 cfu/mL HP. The model rats were randomly divided into model group, positive control group (HP standard quadruple group), GL low-dose, medium-dose and high-dose groups (5, 20, 50 mg/kg), with 12 rats in each group. Another 12 healthy rats were selected as normal control group. Except the normal control group and model group were given constant volume of normal saline intragastrically, the other groups were given corresponding drugs intragastrically, once a day, for 30 consecutive days. After administration, rats received 13C urea breath test, and delta-over-baseline (DOB) was recorded; the pathological and cellular morphological changes of gastric mucosa in rats were observed, and pathological scoring was performed; the levels of interleukin-8 (IL-8), IL-1β, tumor necrosis factor-α (TNF-α), reactive oxygen species (ROS) and malondialdehyde (MDA) were detected in gastric mucosa of rats; mRNA expressions of high mobility group box-1 protein (HMGB1) and nuclear factor-κ-B (NF-κB), relative expressions of nitric oxide synthases (iNOS) and HMGB1, the phosphorylation level of NF- κBp65 were also detected in rats. RESULTS Compared with normal control group, the DOB value, histopathological score of gastric mucosa, the levels of IL-8, IL-1β, TNF-α, ROS and MDA, relative expressions of HMGB1 and NF- κB mRNA, relative expressions of iNOS and HMGB1 protein and the phosphorylation level of NF-κB p65 were all increased significantly in model group (P<0.05); the epithelial cells of gastric mucosa in rats were incomplete in structure and decreased in the number, with an increase in cell fragments and vacuoles, and significant cell pyknosis. Compared with model group, the changes of the above indexes in GL groups and positive control group were significantly reversed (P<0.05); the changes in the above indicators in the GL high-dose group were more significant than GL low-dose and medium-dose groups (P<0.05); the pathological changes of gastric mucosal cells in rats had all improved. CONCLUSIONS GL may inhibit inflammation and oxidative stress by inhibiting the activation of HMGB1/NF-κB pathway, thus relieving HP-induced gastric mucosal injury.

6.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 22-28, 2024.
Article in Chinese | WPRIM | ID: wpr-1003440

ABSTRACT

Objective@#To study the effect of low concentrations of sodium fluoride on the osteogenic/odontogenic differentiation of human dental pulp cells (hDPCs) in vitro.@*Methods@#This study was reviewed and approved by the Ethics Committee. hDPCs were cultured using a modified tissue explant technique in vitro. The effects of different concentrations of sodium fluoride on the proliferation of hDPCs were measured by methylthiazol tetrazolium (MTT) assay. Appropriate concentrations were added to the osteogenic/odontogenic differentiation induction medium, and the cells were induced in vitro. Alizarin red S staining was used to detect the osteoblastic/odontogenic differentiation ability of the cells, and the mRNA expression of the key differentiation factors was detected by RT-qPCR. Moreover, the expression of key molecules of endoplasmic reticulum stress (ERS) was detected by RT-qPCR and Western blot. The data were analyzed with the SPSS 18.0 software package.@*Results@#Low concentration of NaF (0.1 mmol/L) could stimulate cell proliferation in vitro, while a high concentration (5-10 mmol/L) could inhibit cell proliferation (P<0.05). According to the literature and the experimental data, 0.1 mmol/L NaF was selected as the following experimental concentration. The levels of alizarin red S staining were increased after NaF induction of mixed osteogenic/odontogenic differentiation in vitro. The mRNA expression levels of key molecules for osteogenic/odontogenic differentiation, dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP) and osteocalcin (OCN), were increased (P<0.05). The mRNA levels of ERS markers (splicing x-box binding protein-1 (sXBP1), glucose-regulated protein 78 (GRP78) and activating transcription Factor 4 (ATF4) were increased in NaF-treated cells. The protein expression levels of key ER stress molecules (phosphorylated RNA-activated protein kinase-like ER-resident kinase (p-PERK), phosphorylated eukaryotic initiation factor-2α (p-eIF2α) and ATF4) were higher in NaF-treated cells.@*Conclusion@#A low concentration of NaF promotes the osteogenic/odontogenic differentiation of hDPCs and increases the level of ER stress.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 221-233, 2024.
Article in Chinese | WPRIM | ID: wpr-1003427

ABSTRACT

Reflux esophagitis is an inflammatory disease of esophageal mucosa damage caused by the reflux of gastric contents into the esophagus. Its incidence is on the rise, and it has become an important precancerous disease of esophageal cancer. Studies have shown that the continuous inflammatory response stimulates the esophageal mucosa, causing abnormal proliferation of esophageal epithelial cells and damage to esophageal mucosal tissue, which eventually leads to the occurrence of heterogeneous hyperplasia and even carcinogenesis. The nuclear transcription factor-kappa B (NF-κB) signaling pathway is one of the most classical inflammatory and cancer signaling pathways. It has been found that abnormal activation of the NF-κB signaling pathway is crucial to the development and prognosis of reflux esophagitis and esophageal cancer. It is widely involved in the proliferation, autophagy, apoptosis, and inflammatory response of esophageal epithelial cells and tumor cells, accelerating the transformation of reflux esophagitis to esophageal cancer and making it a potential target for the treatment of reflux esophagitis and esophageal cancer. Currently, there is no specific treatment for reflux esophagitis and esophageal cancer, and large side effects often appear. Therefore, finding a promising and safe drug remains a top priority. In recent years, traditional Chinese medicine scholars have conducted a lot of research on NF-κB signaling pathway, and the results indicate that NF-κB signaling pathway is an important potential target for traditional Chinese medicine to prevent and treat reflux esophagitis and esophageal cancer, but there is a lack of comprehensive and systematic elaboration. Therefore, this paper summarized the relevant studies in recent years, analyzed the relationship among NF-κB signaling pathway, reflux esophagitis, esophageal cancer, and transformation from inflammation to cancer, and reviewed the research literature on the regulation of the NF-κB signaling pathway in traditional Chinese medicine to prevent and treat reflux esophagitis and esophageal cancer, so as to provide new ideas for the prevention and treatment of reflux esophagitis and esophageal cancer.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 64-70, 2024.
Article in Chinese | WPRIM | ID: wpr-1003409

ABSTRACT

ObjectiveTo explore the protective effect and mechanism of Zingiberis Rhizoma Recens alcohol extract on lipopolysaccharide (LPS)-induced acute lung injury in mice. MethodBalb/c mice were randomly divided into normal group, model group, dexamethasone group, and low- and high-dose Zingiberis Rhizoma Recens groups. Mice in the normal group were instilled with normal saline through the nose, and the other groups were instilled with normal saline containing LPS (50 μg). After 30 minutes of modeling, the dexamethasone group was gavaged with 5 mg·kg-1 of dexamethasone acetate solution, the low- and high-dose Zingiberis Rhizoma Recens groups were gavaged with different doses of (7, 14 g·kg-1) of Zingiberis Rhizoma Recens alcohol extract, and the normal group and the model group were gavaged with the same volume of water. After 24 hours of modeling, the total number of white blood cells in bronchoalceolar lavage fluid (BALF) was detected by cell counter, and the levels of the inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and superoxide dismutase (SOD), and myeloperoxidase (MPO) was detected by enzyme-linked immunosorbent assay (ELISA). Haematoxylin-eosin (HE) staining method was used to observe the pathological changes of lung tissue in each group, and the Western blot was used to detect the protein expression of nuclear transcription factor (NF)-κB p65, phosphorylation (p)-NF-κB p65, and Toll-like receptor 4 (TLR4) in lung tissue. ResultCompared with the normal group, the white blood cell count in BALF and the levels of TNF-α, IL-1β, IL-6, and MPO in the model group was increased (P<0.01), and the level of SOD was decreased (P<0.05). Pathological damage of lung tissue was obvious, and the protein expression of NF-κB p65, p-NF-κB p65, and TLR4 in lung tissue was increased (P<0.01). Compared with the model group, the white blood cell count in BALF and the levels of TNF-α, IL-1β, IL-6, and MPO in the treatment group was decreased (P<0.05,P<0.01), and the level of SOD was increased (P<0.05,P<0.01). Pathological damage of lung tissue was alleviated, and the protein expression of NF-κB p65, p-NF-κB p65, and TLR4 in lung tissue was decreased (P<0.01). ConclusionZingiberis Rhizoma Recens alcohol extract may play a protective role in LPS-induced acute lung injury in mice by inhibiting the TLR4/NF-κB signaling pathway.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 26-36, 2024.
Article in Chinese | WPRIM | ID: wpr-1003405

ABSTRACT

ObjectiveTo investigate the effect of Yishen Tongluo prescription (YSTLP) on apoptosis of renal tubular epithelial cells and explore the mechanism based on endoplasmic reticulum stress pathway of protein kinase R-like endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4)/transcription factor C/EBP homologous protein (CHOP). MethodThe db/db mice were randomly divided into model group, valsartan group (10 mg·kg-1), and low, middle, high-dose YSTLP groups (1, 2.5, 5 g·kg-1). Samples were collected after eight weeks of drug intervention. In addition, db/m mice in the same litter served as the control group. Human renal tubular epithelial cells (HK-2) were cultured in vitro and divided into the control group, advanced glycated end-product (AGE) group, and AGE + low, middle, and high-dose YSTLP groups (100, 200, 400 mg·L-1). TdT-mediated dUTP nick end labeling (TUNEL) staining was used to detect the apoptosis rate of HK-2 cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was conducted to detect the viability of HK-2 cells. Calcium fluorescence probe staining and luciferase reporter gene method were adopted to detect the luciferase activity of folded protein response element (UPRE) and endoplasmic reticulum stress. Immunohistochemical (IHC) analysis was carried out to measure the protein expressions of phosphorylated PKR (p-PERK), CHOP, and ATF4. Real-time polymerase chain reaction (Real-time PCR) was used to measure the mRNA expression levels of CHOP and X-box binding protein 1 (XBP1) in mouse kidney and HK-2 cells. Western blot was used to detect the protein expression level of p-PERK, PERK, CHOP, ATF4, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), and cleaved Caspase-3 in mouse kidney and HK-2 cells. ResultIn the cellular assay, HK-2 cell viability was significantly reduced, and the apoptosis rate was elevated in the AGE group compared with the control group (P<0.01). The mRNA and protein expression levels of apoptosis-related factor Bcl-2 were significantly reduced (P<0.01), and those of Bax were significantly increased (P<0.01). The protein expression level of cleaved Caspase-3 was significantly increased (P<0.01). Compared with the AGE group, YSTLP administration treatment resulted in elevated cell viability and reduced apoptosis rate (P<0.01). The mRNA and protein expression levels of Bcl-2 were significantly elevated in a time- and dose-dependent manner (P<0.01), and those of Bax were significantly reduced in a time- and dose-dependent manner. The protein expression level of cleaved Caspase-3 was significantly reduced in a time- and dose-dependent manner (P<0.01). The intracellular Ca2+ imbalance and UPRE luciferase fluorescence intensity were increased in the AGE group compared with the control group (P<0.01). The mRNA levels of endoplasmic reticulum stress-related factors CHOP and XBP1 were significantly increased (P<0.01), and the protein expression levels of p-PERK, CHOP, and ATF4 were significantly increased (P<0.05). Compared with the AGE group, YSTLP effectively improved intracellular Ca2+ imbalance in HK-2 cells and decreased UPRE luciferase fluorescence intensity in a dose-dependent manner (P<0.01). It reduced the mRNA levels of endoplasmic reticulum stress-related factors CHOP and XBP1 (P<0.01) and the protein expression levels of intracellular p-PERK, CHOP, and ATF4 in a dose- and time-dependent manner (P<0.01). In animal experiments, the protein expression level of Bcl-2 was significantly reduced(P<0.01), and that of cleaved Caspase-3 and Bax was significantly increased in the model group compared with the control group (P<0.05). The protein expression level of Bcl-2 was dose-dependently elevated, and that of cleaved Caspase-3 and Bax was dose-dependently decreased in the YSTLP groups compared with the model group (P<0.01). Compared with the control group, the mRNA expression levels of CHOP and XBP1 were significantly elevated in the model group (P<0.05, P<0.01), and the protein expression levels of p-PERK, CHOP, and ATF4 were significantly increased (P<0.05). Compared with the model group, YSTLP significantly decreased the mRNA expression levels of CHOP and XBP1 (P<0.01) and the protein expression levels of p-PERK, CHOP, and ATF4 (P<0.01). ConclusionYSTLP can effectively inhibit endoplasmic reticulum stress and improve apoptosis of renal tubular epithelial cells, and its mechanism may be related to the regulation of the PERK/AFT4/CHOP pathway.

10.
Chinese Pharmacological Bulletin ; (12): 46-54, 2024.
Article in Chinese | WPRIM | ID: wpr-1013605

ABSTRACT

Aim To investigate the mechanism of curcumin inhibition of oxidative stress on osteogenic differentiation and its dose-dependent anti-osteoporosis effect. Methods Cellular oxidative stress models were used, different concentrations of curcumin were added to determinethebone formation markers, and the potential signaling pathways involvedwere detected. Meanwhile, the mouse model of osteoporosis ( ovariecto- mized, 0VX) was used to confirm its effect against osteoporosis. Results In vitro experiments found that low concentrations of curcumin (1-10 μmol · L

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 74-82, 2024.
Article in Chinese | WPRIM | ID: wpr-1013342

ABSTRACT

ObjectiveTo investigate the effect of curcumin on the cycle arrest of human colon cancer HCT116 cells and decipher the possible molecular mechanism. MethodThe methyl thiazolyl tetrazolium (MTT) method was employed to examine the effects of curcumin (0, 12.5, 25, 50, 75, 100 μmol·L-1) and 5-fluorouracil (5-FU, 600 μmol·L-1) on the proliferation of HCT116 cells at different time points (24, 48, 72 h). Flow cytometry was employed to examine the cycle of HCT116 cells treated with curcumin (0, 25, 50, 75 μmol·L-1) and 5-FU. Western blot was employed to determine the expression of proteins in the Janus kinase 1 (JAK1)/signal transducer and activator of transcription 1 (STAT1) /cyclin-dependent kinase inhibitor 1A (p21) pathway in HCT116 cells. The binding of STAT1 to p21 promoter region was detected by chromatin immunoprecipitation (ChIP). Small interfering RNA (siRNA) was employed to measure the role of STAT1 in regulating the expression of p21 and that of JAK1 in regulating the activation of STAT1 by Western blot and cellular immunofluorescence, respectively. ResultCompared with the blank group, the HCT-116 cells treated with curcumin and 5-FU showed decreased viability (P<0.05), increased proportions of cells in the G0/G1 phase (P<0.05), decreased proportions of cells in the S phase and G2/M phase (P<0.05), down-regulated protein level of phosphorylated p21 (P<0.05), and up-regulated protein level of p21 (P<0.05). Compared with the curcumin group, the p21 siRNA+ curcumin group presented decreased proportion of cells in G0/G1 phase (P<0.05). Compared with the blank group, curcumin elevated the level of phosphorylated STAT1 (p-STAT1) (P<0.05). Compared with the curcumin group, the curcumin + STAT1 siRNA group showcased up-regulated protein level of p21 in HCT116 cells (P<0.05). The mechanism study showed that curcumin treatment enhanced the enrichment of STAT1 in the p21 promoter region (P<0.05) compared with the blank group. Compared with the blank group, curcumin up-regulated the level of phosphorylated JAK1 (p-JAK1) (P <0.05). Compared with the curcumin group, the curcumin + STAT1 siRNA group demonstrated up-regulated protein levels of p-STAT1 and p21 in HCT116 cells (P<0.05). ConclusionCurcumin may induce the cycle arrest of human colon cancer HCT116 cells by activating the JAK1/STAT1/p21 signaling pathway.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 118-125, 2024.
Article in Chinese | WPRIM | ID: wpr-1012700

ABSTRACT

ObjectiveTo investigate the clinical efficacy of Qihuang Jianpi Zishen Granules in the treatment of systemic lupus erythematosus (SLE) and its effect on the signal transducer and activator of tranSCription 3/mammalian target of rapamycin (STAT3/mTOR) signaling pathway, and to decipher the possible mechanism. MethodSixty female SLE patients who met the criteria in the First Affiliated Hospital of Anhui University of Chinese Medicine from May 2022 to May 2023 were selected and randomized into a control group and an observation group (30 cases in each group). The control group was treated with prednisone acetate + hydroxychloroquine sulfate orally, and the observation group was additionally treated with Qihuang Jianpi Zishen granules. The treatment lasted for 8 weeks. The SLE disease activity (SLEDAI), TCM syndrome score, erythrocyte sedimentation rate (ESR), hypersensitive C-reactive protein (hs-CRP), immune indexes [immunoglobulin G (IgG), C3, C4, CD4+, and CD8+], interleukin (IL)-17, IL-23, interferon (IFN)-γ, 24 h urinary protein (24 h PRO), serum creatinine (SCr), and expression of proteins [STAT3, phosphorylated (p)-STAT3, mTOR protein and STAT3,mTOR mRNA] in the STAT3/mTOR signaling pathway were determined before and after treatment. In addition, the adverse reactions were recorded. ResultAfter 8 weeks of treatment, the total response rate in the observation group was 93.33% (28/30), which was higher than that (70.00%, 21/30) in the control group (χ2=4.007, P<0.05). After treatment, both groups showed declined SLEDAI, TCM syndrome score, ESR, hs-CRP, IgG, CD8+, IL-17, IL-23, IFN-γ, 24 h PRO, SCr, and expression of proteins in the STAT3/mTOR pathway (P<0.01) and elevated levels of C3, C4, and CD4+ (P<0.01). Moreover, the observation group had lower SLEDAI, TCM syndrome score, ESR, hs-CRP, IgG, CD8+, IL-17, IL-23, IFN-γ, 24 h PRO, SCr, and expression of proteins in the STAT3/mTOR pathway (P<0.05, P<0.01) and higher levels of C3, C4, and CD4+ (P<0.05, P<0.01) than the control group after treatment. Neither group showed serious adverse reactions during the treatment period. ConclusionQihuang Jianpi Zishen Granules can ameliorate the inflammatory response, reduce the disease activity, and mitigate the kidney injury in SLE by inhibiting the STAT3/mTOR signaling pathway to regulate the immune function.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 225-233, 2024.
Article in Chinese | WPRIM | ID: wpr-1011462

ABSTRACT

As the pace of society increases and lifestyles change, the incidence and mortality rates of breast cancer continue to rise. Targeted therapies are now promising in the treatment of breast cancer, and a variety of protein targets have been identified to play an important role in the development of breast cancer. Among them, signal transducer and activator of transcription (STAT) proteins constitute a crucial group that serves as important targets for transducing cellular transcriptional information, which can regulate downstream cell proliferation, apoptosis, cell migration, invasion, angiogenic factors, etc. and then affect the progression of breast cancer. The STAT family is closely associated with the inflammatory response to tumors and plays a landmark role in tumor development as well as in diagnosis and prognosis. The "inflammation-cancer" transformation refers to the process in which the inflammatory microenvironment caused by uncontrolled inflammation promotes normal cells to become cancerous. According to the theory of Chinese medicine, "heat toxicity" in "cancer toxicity" corresponds to inflammation, which is closely related to tumor development. As a major link associated with the inflammatory response, the STAT family has a promising role in the development and treatment of a variety of tumors, but its relevance to breast cancer remains inadequately explored. Chinese medicine has been shown to have good efficacy in the prevention and treatment of breast cancer, and some current studies have shown that the active ingredients and compounds of Chinese medicine have certain intervention effects on breast cancer-related STAT proteins, but there has not been a systematic review. In order to better sort out and summarize the studies on the effects of Chinese herbal medicines based on the STAT family interventions in breast cancer, this paper reviewed the studies on Chinese herbal medicines acting on the STAT family in recent years, aiming to provide new ideas for clinical applications in breast cancer and to provide thoughts for the development of STAT protein-based drugs.

14.
Acta Pharmaceutica Sinica B ; (6): 256-272, 2024.
Article in English | WPRIM | ID: wpr-1011250

ABSTRACT

Liver regeneration following injury aids the restoration of liver mass and the recovery of liver function. In the present study we investigated the contribution of megakaryocytic leukemia 1 (MKL1), a transcriptional modulator, to liver regeneration. We report that both MKL1 expression and its nuclear translocation correlated with hepatocyte proliferation in cell and animal models of liver regeneration and in liver failure patients. Mice with MKL1 deletion exhibited defective regenerative response in the liver. Transcriptomic analysis revealed that MKL1 interacted with E2F1 to program pro-regenerative transcription. MAPKAPK2 mediated phosphorylation primed MKL1 for its interaction with E2F1. Of interest, phospholipase d2 promoted MKL1 nuclear accumulation and liver regeneration by catalyzing production of phosphatidic acid (PA). PA administration stimulated hepatocyte proliferation and enhanced survival in a MKL1-dependent manner in a pre-clinical model of liver failure. Finally, PA levels was detected to be positively correlated with expression of pro-regenerative genes and inversely correlated with liver injury in liver failure patients. In conclusion, our data reveal a novel mechanism whereby MKL1 contributes to liver regeneration. Screening for small-molecule compounds boosting MKL1 activity may be considered as a reasonable approach to treat acute liver failure.

15.
Indian J Ophthalmol ; 2023 May; 71(5): 2143-2151
Article | IMSEAR | ID: sea-225039

ABSTRACT

Purpose: Pediatric cataract is a major cause of preventable childhood blindness worldwide. Although genetic mutations or infections have been described in patients, the mechanistic basis of human cataract development remains poorly understood. Therefore, gene expression of structural, developmental, profibrotic, and transcription factors in phenotypically and etiologically distinct forms of pediatric cataracts were evaluated. Methods: This cross?sectional study included 89 pediatric cataract subjects subtyped into 1) prenatal infectious (cytomegalovirus, rubella, and combined cytomegalovirus with rubella infection), 2) prenatal non?infectious, 3) posterior capsular anomalies, 4) postnatal, 5) traumatic, and 6) secondary, and compared to clear, non?cataractous material of eyes with the subluxated lenses. Expression of lens structure?related genes (Aqp-0, HspA4/Hsp70, CrygC), transcription factors (Tdrd7, FoxE3, Maf, Pitx 3) and profibrotic genes (Tgf?, Bmp7, ?SmA, vimentin) in surgically extracted cataract lens material were studied and correlated clinically. Results: In cataract material, the lens?related gene expression profiles were uniquely associated with phenotype/etiology of different cataracts. Postnatal cataracts showed a significantly altered FoxE3 expression. Low levels of Tdrd7 expression correlated with posterior subcapsular opacity, whereas CrygC correlated significantly with anterior capsular ruptures. The expression of Aqp0 and Maf was elevated

16.
Int. j. morphol ; 41(2): 491-500, abr. 2023. ilus, tab
Article in Spanish | LILACS | ID: biblio-1440341

ABSTRACT

Siendo el cáncer gástrico la 3ª causa de muerte por cáncer en Chile, y existiendo estrategias de tamizaje consistentes en pesquisa de lesiones preneoplásicas de la mucosa gástrica, es relevante conocer los aspectos genéticos y moleculares que puedan ser aplicados, en la optimización de dichas estrategias a grupos de mayor riesgo. El objetivo de este manuscrito fue revisar la evidencia actual en los aspectos señalados, y de la inmunohistoquímica de 4 marcadores (p53, CDX2, MUC2 y S100A9) en la mucosa gástrica normal y en las lesiones preneoplásicas de la misma.


SUMMARY: Since gastric cancer is the 3rd leading cause of death from cancer in Chile, and there are screening strategies consisting of screening for preneoplastic lesions of the gastric mucosa, it is important to know certain genetic and molecular aspects that can be applied in optimizing these strategies for higher risk groups. The aim of this manuscript was to review the current evidence on the aforementioned aspects, and on the immunohistochemistry of 4 markers (p53, CDX2, MUC2 and S100A9) in normal gastric mucosa and in its preneoplastic lesions.


Subject(s)
Humans , Precancerous Conditions/pathology , Stomach Neoplasms/pathology , Gastric Mucosa/pathology , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Immunohistochemistry , Biomarkers, Tumor , Mass Screening , Risk Factors , Genes, p53 , Mucin-2 , CDX2 Transcription Factor , Gastric Mucosa/metabolism , Metaplasia
17.
Indian J Ophthalmol ; 2023 Feb; 71(2): 553-559
Article | IMSEAR | ID: sea-224845

ABSTRACT

To conduct an integrated bioinformatics analysis of extant aqueous humor (AH) gene expression datasets in order to identify key genes and the regulatory mechanism governing primary open?angle glaucoma (POAG) progression. Methods: Two datasets (GSE101727 and GSE105269) were downloaded from the Gene Expression Omnibus, and the messenger RNAs (mRNAs), microRNAs (miRNAs), and long noncoding RNAs (lncRNAs) were identified between controls and POAG patients. Differentially expressed (DE) mRNAs and DElncRNAs were then subjected to pathway enrichment analyses, after which a protein–protein interaction (PPI) network was generated. This network was then expanded to establish lncRNA–miRNA–mRNA and miRNA–transcription factor (TF)–mRNA networks. Results: The GSE101727 dataset was used to identify 2746 DElncRNAs and 2208 DEmRNAs, while the GSE105269 dataset was used to identify 45 DEmiRNAs. We ultimately constructed a competing endogenous RNA (ceRNA) network incorporating 47 lncRNAs, six miRNAs, and 17 mRNAs. The proteins encoded by these 17 hub mRNAs were found to be significantly enriched for activities that may be linked to POAG pathogenesis. In addition, we generated a miRNA–TF–mRNA regulatory network containing two miRNAs (miR?135a?5p and miR?139?5p), five TFs (TGIF2, TCF3, FOS, and so on), and five mRNAs (SHISA7, ST6GAL2, TXNIP, and so on). Conclusion: The SHISA7, ST6GAL2, TXNIP, FOS, and DCBLD2 genes may be viable therapeutic targets for the prevention or treatment of POAG and are regulated by the TFs (TGIF2, HNF1A, TCF3, and FOS)

18.
Cancer Research and Clinic ; (6): 481-487, 2023.
Article in Chinese | WPRIM | ID: wpr-996261

ABSTRACT

Objective:To investigate the expression of acetyl-CoA carboxylase 1 (ACC1) in ovarian cancer tissues and cells, and the related mechanisms of the effect of ACC1 on cell migration and lipogenesis in ovarian cancer.Methods:Samples including 1 case of normal ovarian tissue, 1 case of ovarian cancer primary lesion tissue and 1 case of ovarian cancer omentum metastatic tissue diagnosed by pathology examination of patients undergoing surgery resection who admitted to Linyi Cancer Hospital between January 2019 and December 2021 were collected. Immunohistochemistry was used to detect the protein levels of ACC1 and Yin Yang protein 1 (YY1) of all tissues. The PROMO database was used to predict the possible binding sites of YY1 and ACC1 promoter region. Through the assembled viral vector, the HEY cells of human ovarian cancer with ACC1 or YY1 expression [the untreated cells were treated as the negative control (NC)], or knocked down ACC1 or YY1 (the interference sequence sh1, sh2, sh3 was transferred to the target gene, and the negative control sequence shNC was transferred to the interference sequence). Double luciferase reporter gene assay was used to verify the binding sites of YY1 and ACC1 promoter and the activity of transcriptional regulation. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and Western blot were used to detect the mRNA and protein expression levels of ACC1 and YY1 in the treated HEY cells, respectively. Transwell assay was used to detect the migration ability of HEY cells. Oil red O staining and Nile red staining were used to detect the lipid droplets in HEY cells.Results:The immunohistochemical scores of ACC1 and YY1 were 0, 2, 8 scores and 0, 4, 6 scores, respectively in normal ovarian tissue, primary lesion of ovarian cancer, and omentum metastatic tissue. Transwell assay showed that the number of invasive HEY cells in ACC1 overexpression group was more than that in NC group [(87.7±7.4) vs. (52.2±4.2), t = 5.19, P = 0.003]. The number of invasive HEY cells in ACC1-sh1 group, and ACC1-sh2 group with the knockdown of ACC1 was less than that in shNC group [(21.2±1.5), (29.7±2.3) vs. (56.2±5.3); t value was 6.41, 3.77; P < 0.001, P < 0.005]. The number of lipid droplets in HEY cells in the ACC1 overexpression group was more than that in the control NC group [Oil red O staining: (301±25) vs. (215±21); Nile red staining: (287±15) vs. (207±10); all P < 0.05]; the number of lipid droplets in HEY cells in ACC1-sh1 and ACC1-sh2 group with the knockdown of ACC1 was less than that in ACC1-shNC group [Oil red O staining: (113±8), (119±12) vs. (195±18); Nile red staining: (82±8), (117±11) vs. (165±17); all P < 0.05]. The result of dual luciferase reporter assay showed that overexpression of YY1 promoted the luciferase activity of the wild type ACC1 promoter region report gene ( P = 0.003), while the luciferase activity of the report gene was inhibited compared with the wild type after the mutation of binding sites of YY1 in ACCI promoter region ( P = 0.008). Western blot results showed that the expression levels of YY1 and ACC1 protein in HEY cells with YY1 overexpression group were higher than those in NC group, which indicated a synergistic increasing trend of both YY1 and ACC1; the expression levels of YY1 and ACC1 protein in YY1-sh1 group, YY1-sh2 group and YY1-sh3 group with the knockdown of YY1 were lower than those in the control YY1-shNC group, which indicated a synergistic decreasing trend of both YY1 and ACC1. Conclusions:ACC1 and YY1 are highly expressed in ovarian cancer metastatic tissues and both show a positive correlation trend. The expression level of ACC1 in vitro has an impact on cell migration and lipogenesis in ovarian cancer via YY1 transcriptionally regulating ACC1.

19.
Chinese Journal of Ocular Fundus Diseases ; (6): 576-582, 2023.
Article in Chinese | WPRIM | ID: wpr-995670

ABSTRACT

Objective:To observe and preliminarily explore the effect of mogroside on oxidative stress of retinal pigment epitheliaum (RPE) cells induced by hydrogen peroxide (H 2O 2) and its possible mechanism. Methods:A experimental study. The RPE cells were divided into control group, H 2O 2 group, silent information regulator of transcription 1 (SIRT1) inhibitor EX527 group (EX527 group), mogroside group, mogroside+EX527 group. Methyl thiazolete trazolium method was used to detect cell survival rate. Flow cytometry was used to detect cell apoptosis rate. 2' ,7'-dichlorodihydrofluorescein diacetate fluorescent probe method, xanthine method and enzyme-linked immunosorbent assay method were used to detect the level of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in cells respectively. Real-time quantitative polymerase chain reaction and Western blot were used to detect relative expressions of SIRT1, nuclear factor erythroid-2-related actor 2 (Nrf2), heme oxygenase-1 (HO-1) mRNA and protein in cells. One-way ANOVA was used for comparison among groups. The pairwise comparison between groups was tested by the least significant difference t test. Results:Compared with the control group, the H 2O 2 group cell survival rate decreased, the apoptosis rate increased, the ROS level in the cells increased, the SOD activity decreased, the MDA content increased, and the relative expression of SIRT1, Nrf2, HO-1 mRNA and protein decreased ( P<0.05). Compared with H 2O 2 group, the cell survival rate decreased, apoptosis rate increased, the cell ROS level increased, SOD activity decreased, MDA content increased, SIRT1, Nrf2, HO-1 mRNA and protein expression decreased in EX527 group ( P<0.05); the cell survival rate increased, apoptosis rate decreased, ROS level decreased, SOD activity increased, MDA content decreased, and the relative expression of SIRT1, Nrf2, HO-1 mRNA and protein increased in mogroside group ( P<0.05). Compared with the mogrosides group, the cell survival rate decreased, the apoptosis rate increased, the level of ROS increased, SOD activity decreased, MDA content increased, SIRT1, Nrf2, HO-1 mRNA and protein decreased in mogrosides+EX527 group ( P<0.05). Conclusions:Mogrosides can alleviate the oxidative stress response of visual RPE cells induced by H 2O 2, promote cell proliferation, and reduce cell apoptosis. Mogrosides may exert antioxidant effects by activating the SIRT1/Nrf2 signaling pathway.

20.
Chinese Journal of Microbiology and Immunology ; (12): 130-136, 2023.
Article in Chinese | WPRIM | ID: wpr-995265

ABSTRACT

Objective:To investigate whether salidroside (SAL) improves lung tissue injury in rats with severe pneumonia (SP) through mediating toll-like receptor 4/nuclear transcription factor-κB/NOD-like receptor protein 3 (TLR4/NF-κB/NLRP3) signaling pathway.Methods:Seventy-five Wistar rats were used in this study. Fifteen of them were randomly selected as the sham operation group, and the others were induced by endotracheal infusion of Klebsiella pneumoniae ( Kp) suspension to construct a rat model of SP. After modeling, the rats were randomly divided into four groups with 15 rats in each group: model group, low-dose SAL group (30 mg/kg), high-dose SAL group (60 mg/kg) and dexamethasone (DXMS, 15 mg/kg) group. The sham operation group and the model group were given the same amount of normal saline for seven consecutive days. The wet-dry weight ratio (W/D) of lung tissues in each group was detected. HE and TUNEL staining methods were used to observe the morphology of lung tissues and cell apoptosis. The levels of TNF-α, IL-1β, IL-6, IL-18 and IL-10 in bronchoalveolar lavage fluid (BALF) were detected by ELISA. The expression of TLR4, myeloid differentiation factor (MyD88), NF-κBp65, phosphorylated NF-κBp65 (p-NF-κBp65) and NLRP3 at protein level in lung tissues was detected by Western blot. Results:The rat model of SP was successfully constructed by endotracheal infusion of Kp suspension. Compared with the sham operation group, the model group showed more severe edema of lung tissues, increased W/D value ( P<0.05), loose and incomplete alveolar structure, edema of alveolar wall and thickened alveolar wall, massive inflammatory cell infiltration, increased apoptosis rate as well as higher levels of TNF-α, IL-1β, IL-6 and IL-18 and lower lover of IL-10 in BALF. Moreover, the relative expression of TLR4, MyD88, NF-κBp65, p-NF-κBp65 and NLRP3 at protein level in lung tissues was increased in the model group ( P<0.05). Gradually improved pathological injury of lung tissues, decreased W/D value ( P<0.05), recovered alveolar structure, reduced alveolar wall edema and decreased cell apoptosis rate were observed in the low-dose and high-dose SAL groups as well as the DXMS group as compared with those of the model group. Besides, the three groups also showed decreased levels of TNF-α, IL-1β, IL-6 and IL-18 and increased level of IL-10 in BALF, and inhibited expression of TLR4, MyD88, NF-κBp65, p-NF-κBp65 and NLRP3 at protein level in lung tissues ( P<0.05). DXMS performed better in improving lung injury in rats with SP, followed by high and low doses of SAL ( P<0.05). Conclusions:SAL could reduce cell apoptosis and improve the Kp-induced lung injury in rats. The mechanism might be related to the blockage of TLR4/NF-κB/NLRP3 signaling pathway activation and inhibition of inflammatory factor expression.

SELECTION OF CITATIONS
SEARCH DETAIL