Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Asian Journal of Andrology ; (6): 240-248, 2021.
Article in English | WPRIM | ID: wpr-879765

ABSTRACT

Spermatogonial stem cells (SSCs) have great applications in both reproductive and regenerative medicine. Primates including monkeys are very similar to humans with regard to physiology and pathology. Nevertheless, little is known about the isolation, the characteristics, and the culture of primate SSCs. This study was designed to identify, isolate, and culture monkey SSCs. Immunocytochemistry was used to identify markers for monkey SSCs. Glial cell line-derived neurotrophic factor family receptor alpha-1 (GFRA1)-enriched spermatogonia were isolated from monkeys, namely Macaca fascicularis (M. fascicularis), by two-step enzymatic digestion and magnetic-activated cell sorting, and they were cultured on precoated plates in the conditioned medium. Reverse transcription-polymerase chain reaction (RT-PCR), immunocytochemistry, and RNA sequencing were used to compare phenotype and transcriptomes in GFRA1-enriched spermatogonia between 0 day and 14 days of culture, and xenotransplantation was performed to evaluate the function of GFRA1-enriched spermatogonia. SSCs shared some phenotypes with rodent and human SSCs. GFRA1-enriched spermatogonia with high purity and viability were isolated from M. fascicularis testes. The freshly isolated cells expressed numerous markers for rodent SSCs, and they were cultured for 14 days. The expression of numerous SSC markers was maintained during the cultivation of GFRA1-enriched spermatogonia. RNA sequencing reflected a 97.3% similarity in global gene profiles between 0 day and 14 days of culture. The xenotransplantation assay indicated that the GFRA1-enriched spermatogonia formed colonies and proliferated in vivo in the recipient c-Kit

2.
Genet. mol. biol ; 40(2): 540-549, Apr.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-892408

ABSTRACT

Abstract The mechanisms involved in the fast growth of Angiostrongylus cantonensis from fifth-stage larvae (L5) to female adults and how L5 breaks through the blood-brain barrier in a permissive host remain unclear. In this work, we compared the transcriptomes of these two life stages to identify the main factors involved in the rapid growth and transition to adulthood. RNA samples from the two stages were sequenced and assembled de novo. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of 1,346 differentially expressed genes between L5 and female adults was then undertaken. Based on a combination of analytical results and developmental characteristics, we suggest that A. cantonensis synthesizes a large amount of cuticle in L5 to allow body dilatation in the rapid growth period. Products that are degraded via the lysosomal pathway may provide sufficient raw materials for cuticle production. In addition, metallopeptidases may play a key role in parasite penetration of the blood-brain barrier during migration from the brain. Overall, these results indicate that the profiles of each transcriptome are tailored to the need for survival in each developmental stage.

3.
Chinese Traditional and Herbal Drugs ; (24): 4044-4050, 2017.
Article in Chinese | WPRIM | ID: wpr-852497

ABSTRACT

Objective Recent years, some studies have been studied on the biosynthesis of cordycepin, but it is not clear. To sequence the transcriptomes of the Ophiocordyceps sinensis which could provide the basis for revealing the bio-synthesis mechanism of cordycepin. Methods In this study, by Illumina/Solexa HiSeq 2500 technology, the transcriptomes of the O. sinensis fungus (anamorph) and the fruiting body (teleomorph) was sequenced, assembled and analyzed. By RT-PCR, the full lengths of RNRL (RNR large subunit) and RNRM (RNR small subunit) cDNA were cloned from the fresh O. sinensis fruit body. Results The pathway and the genes involved in cordycepin biosynthesis were predicted. Among of them, RNR was the critical enzyme in the metabolism of adenosine, also predicted to play an important role in the biosynthesis of cordycepin. From the transcriptome data, one large, one small subunits, and four similar sequences of RNR were found. RNRL mRNA was 2 733 bp, encoding 910 aa and RNRM mRNA 1 257 bp, encoding 418 aa. The analysis of the conserved and functional regions showed that catalytic site and binding site mainly lied in RNRL, RNRM contained a ferritin-like conserved sequence. Conclusion This study would be established for revealing the bio-synthesis mechanism of cordycepin.

4.
Indian J Physiol Pharmacol ; 2009 Jul-Sept; 53(3): 197-208
Article in English | IMSEAR | ID: sea-145926

ABSTRACT

Time-synchronous development of endometrium and embryo under adequate progesterone dominance is considered integral to the process of blastocyst implantation in the human. It now appears that hypothesisdriven and candidate-based deductive approach fails to explain this complex control process. We propose a systems biology approach to elucidate the control process underlying the physiological basis of successful interfacing between embryo and endometrium towards blastocyst implantation. Elucidation of the time course pattern of transcriptomics involved in the process of blastocyst implantation in mid-luteal phase endometrium with and without progesterone dominance, as well as, with and without viable embryo shall elaborate upon the polygenic and multifactorial nature of the process of blastocyst implantation. Accordingly, a large scale homeodynamic model of hierarchical arrangement of functional networks of regulatory genomic expressional elements at the level of endometrial receptivity shall emerge. It is anticipated that such a systems biology approach shall provide an integrated picture of the process and shall also open up novel areas of basic, strategic and translational research in the biology of blastocyst implantation.

SELECTION OF CITATIONS
SEARCH DETAIL