Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Hematol., Transfus. Cell Ther. (Impr.) ; 43(3): 377-381, July-Sept. 2021. tab, ilus
Article in English | LILACS | ID: biblio-1346260

ABSTRACT

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by dysplasias, ineffective hematopoiesis and risk of acute myeloid leukemia transformation. Approximately 90% of MDS patients present mutations in genes involved in various cell signaling pathways. Specialized DNA polymerases, such as POLN, POLI, POLK, POLQ, POLH, POLL and REV3L, insert a nucleotide opposite replication-blocking DNA lesions in an error-prone manner and, in this way, sometimes can actively promote the generation of mutation. For the best of our knowledge, has not been described the mutations of these genes in MDS. DNA target sequencing CDS regions of the REV3L gene was performed in a 58-year-old man diagnosed as High Risk Myelodysplastic Syndrome. The patient presented very low hemoglobin, increased number of blasts, karyotype:47,XY,+8[6]/47,XY,del(7)(q32),+8[7], no response to hypomethylating therapy (decitabine), all markers of poor prognosis. Target sequencing identified a mutation c.9253-6T>C REV3L (Substitution - intronic) with VAF (variant allele frequency) = 16% considered pathogenic according to Functional Analysis through. Hidden Markov Models (FATHMM). This is the first evidence of REV3L mutation in MDS and, of utmost importance, associated with poor prognosis.


Subject(s)
Humans , Male , Middle Aged , Myelodysplastic Syndromes , Prognosis
2.
Chinese Journal of Radiation Oncology ; (6): 1103-1108, 2017.
Article in Chinese | WPRIM | ID: wpr-613007

ABSTRACT

The stability of cell genetic material is influenced by a variety of factors, both internal and external, which can cause various types of DNA damage, such as DNA alkylation, oxidation, mismatching, loop structure, atypical DNA structure, single-strand break, and double-strand break.These DNA damages disrupt cellular homeostasis and dynamic equilibrium, which cause gene mutations, chromosomal abnormalities, and even degradation, aging, and death at different biological levels.By searching and identifying DNA damage sites, the cell activates a series of biochemical pathways, coordinates the progress of DNA replication and transcription, and then repairs the DNA damage.In this way, the cell maintains its independence and stability.While radiotherapy plays a role in eliminating tumors by DNA damages, it also initiates DNA damage responses.Among the responses, base excision repair, nucleotide excision repair, mismatch repair, double-strand break repair, and post-translesion synthesis repair play a key role in repairing the damages.The dysfunction of these repair pathways will cause differences in tumor radiation sensitivity.This paper summarizes recent research results in DNA damage repair, and focuses on the types of DNA damage and their repair mechanisms, so as to promote the understanding of the great significance of this field and to provide a theoretical basis for exploring the application of DNA damage repair pathways in tumor therapy.

SELECTION OF CITATIONS
SEARCH DETAIL