Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Chinese Medical Journal ; (24): 1964-1968, 2018.
Article in English | WPRIM | ID: wpr-773943

ABSTRACT

Background@#Previous studies demonstrate that eccrine sweat glands are innervated by both cholinergic and adrenergic nerves. However, it is still unknown whether the secretory coils and ducts of eccrine sweat glands are equally innervated by the sympathetic nerve fibers. To well understand the mechanisms on sweat secretion and reabsorption, the differential innervation of secretory coils and ducts in human eccrine sweat glands was investigated in the study.@*Methods@#From June 2016 to June 2017, six human skins were fixed, paraffin-embedded, and cut into 5 μm-thick sections, followed by costaining for nerve fiber markers protein gene product 9.5 (PGP 9.5), tyrosine hydroxylase (TH) and vasoactive intestinal peptide (VIP), and eccrine sweat gland markers K7, S100P, and K14 by combining standard immunofluorescence with tyramide signal amplification (IF-TSA). Stained sections were observed under the microscope, photographed, and analyzed.@*Results@#The fluorescent signals of PGP 9.5, TH, and VIP were easily visualized, by IF-TSA, as circular patterns surrounding eccrine sweat glands, but only PGP 9.5 could be observed by standard IF. The IF-TSA method is more sensitivity than standard IF in detecting antigens expressed at low levels. PGP 9.5, TH, and VIP appeared primarily surrounding the secretory coils and sparsely surrounding the sweat ducts.@*Conclusion@#Sweat secretion is mainly controlled by autonomic nerves whereas sweat reabsorption is less affected by nerve activity.


Subject(s)
Humans , Eccrine Glands , Fluorescent Antibody Technique , Nerve Fibers , Sweat Glands , Vasoactive Intestinal Peptide
2.
Mem. Inst. Oswaldo Cruz ; 112(2): 140-145, Feb. 2017. graf
Article in English | LILACS | ID: biblio-841762

ABSTRACT

BACKGROUND Fluorescence in situ hybridisation (FISH) associated with Tyramide Signal Amplification (TSA) using oligonucleotides labeled with non-radioactive fluorophores is a promising technique for detection and differentiation of fungal species in environmental or clinical samples, being suitable for microorganisms which are difficult or even impossible to culture. OBJECTIVE In this study, we aimed to standardise an in situ hybridisation technique for the differentiation between the pathogenic species Paracoccidioides brasiliensis and Paracoccidioides lutzii, by using species-specific DNA probes targeting the internal transcribed spacer-1 (ITS-1) of the rRNA gene. METHODS Yeast and mycelial phase of each Paracoccidioides species, were tested by two different detection/differentiation techniques: TSA-FISH for P. brasiliensis with HRP (Horseradish Peroxidase) linked to the probe 5’ end; and FISH for P. lutzii with the fluorophore TEXAS RED-X® also linked to the probe 5’ end. After testing different protocols, the optimised procedure for both techniques was accomplished without cross-positivity with other pathogenic fungi. FINDINGS The in silico and in vitro tests show no reaction with controls, like Candida and Cryptococcus (in silico) and Histoplasma capsulatum and Aspergillus spp. (in vitro). For both phases (mycelial and yeast) the in situ hybridisation showed dots of hybridisation, with no cross-reaction between them, with a lower signal for Texas Red probe than HRP-TSA probe. The dots of hybridisation was confirmed with genetic material marked with 4’,6-diamidino-2-phenylindole (DAPI), visualised in a different filter (WU) on fluorescent microscopic. MAIN CONCLUSION Our results indicated that TSA-FISH and/or FISH are suitable for in situ detection and differentiation of Paracoccidioides species. This approach has the potential for future application in clinical samples for the improvement of paracoccidioidomycosis patients prognosis.


Subject(s)
Paracoccidioides/classification , Paracoccidioides/genetics , DNA, Fungal , DNA, Ribosomal Spacer , Species Specificity , Oligonucleotide Probes , In Situ Hybridization, Fluorescence , Fluorescence , Fluorescent Dyes
3.
Journal of Central South University(Medical Sciences) ; (12): 1-10, 2010.
Article in Chinese | WPRIM | ID: wpr-404334

ABSTRACT

Objective To explore the distribution pattern of G protein-coupled receptor family C, group 6, subtype A (GPRC6A) mRNA in adult mice. Methods The distribution of GPRC6A mRNA in paraffin embedded adult mouse tissues was determined by highly sensitive nonradioactive cRNA probe in situ hybridization (ISH). We compared ISH with and without addition of tyramide signal amplification (TSA). GPRC6A wild-type and littermate GPRC6A null mice tissue sections were investigated by ISH. Results TSA greatly increased the sensitivity of ISH to detect GPRC6A mRNA in wild type mouse tissues. There was no detection of GPRC6A mRNA in GPRC6A gene specific knockout tissue in paraffin embedded tissue section. The mRNA of GPRC6A was detectable in the digestive gland or accessory digestive gland including salivary gland and pancreas, as well as in the tissues including kidney, testis, brain, muscle, and fat. Conclusion The mRNA distribution pattern of GPRC6A gene is compatible with the phenotype of GPRC6A knockout mice.

SELECTION OF CITATIONS
SEARCH DETAIL