Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 169-178, 2024.
Article in Chinese | WPRIM | ID: wpr-1006568

ABSTRACT

ObjectiveTo establish a qualitative and quantitative analysis method for chemical constituents in Liu Junzitang(LJZT), and to clarify its material basis. MethodThe chemical constituents in LJZT were analyzed by ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS), and the resulting compounds were identified by using databases, such as MassBank, PubChem, ChemSpider, Traditional Chinese Medicine Systems Pharmacology Database and Analytical Platform(TCMSP), and by combining with relevant literature. UPLC was used to establish a quantitative method for analysis of 9 compounds in LJZT, including liquiritin, hesperidin, lobetyolin, liquiritigenin, glycyrrhizic acid, nobiletin, tangeretin, atractylenolide Ⅱ and Ⅰ. ResultBy combining the relevant literature, database and MS information, a total of 79 compounds were identified from LJZT, including 31 flavonoids, 15 terpenoids, 14 nitrogen-containing compounds, 6 phenylpropanoids, 6 organic acids and 7 other compounds. The established quantitative analytical method for the nine representative components showed good linearity within their respective linear ranges, and the precision, stability, reproducibility and recovery were in accordance with the requirements. The quantitative results showed that the contents of liquiritin, hesperidin, lobetyolin, liquiritigenin, glycyrrhizic acid, nobiletin, tangeretin, atractylenolide Ⅱ and Ⅰ in LJZT were 0.376 5, 2.602 1, 0.082 6, 0.128 1, 1.778 6, 0.015 7, 0.006 7, 0.030 4, 0.003 2 mg·g-1, respectively. ConclusionThe established method can quickly, sensitively and accurately analyze the chemical constituents in LJZT, clarify that the material basis of LJZT is mainly flavonoids, terpenoids and nitrogen-containing compounds, and simultaneously determine the contents of the 9 components, which can lay a foundation for the research on quality control, mechanism and clinical application of LJZT.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 118-125, 2024.
Article in Chinese | WPRIM | ID: wpr-1006276

ABSTRACT

ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS), to evaluate the establishment of a mouse model of liver Yin deficiency by thyroid tablet suspension combined with 10% carbon tetrachloride(CCl4) from the perspective of non-targeted metabolomics, in order to lay the foundation for the establishment of a traditional Chinese medicine(TCM) syndrome model. MethodA total of 24 mice were randomly divided into blank group and model group. The model group was given thyroid tablet suspension(0.003 2 g·kg-1) by gavage for 14 consecutive days, and 10% CCl4(5 mL·kg-1) was intraperitoneally injected once a week to establish a liver Yin deficiency model, while the blank group was injected with an equal amount of olive oil intraperitoneally and gavaged with an equal amount of distilled water, and was fed with normal feed. After the modeling was completed, 6 mice in each group were randomly selected, the levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), interleukin(IL)-6, IL-10, tumor necrosis factor-α(TNF-α)were measured in the mice serum, and malondialdehyde(MDA), superoxide dismutase(SOD), total protein(TP), hydroxyproline(HYP) and other indicators were measured in the mice liver. Liver tissue sections were taken for hematoxylin-eosin(HE) staining and observing pathological changes. The remaining 6 mice in each group were subjected to UPLC-Q-TOF-MS combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen differential metabolites in the liver Yin deficiency mouse model, Kyoto Encyclopedia of Genes and Genomes(KEGG) database was used to analyze the corresponding metabolic pathways of differential metabolites. ResultCompared with the blank group, mice in the model group showed liver Yin deficiency manifestations such as reduced body weight, fatigue and sleepiness, disheveled and lusterless hair, irritability. The levels of ALT, cAMP/cGMP, IL-6, AST, MDA, cAMP, TNF-α significantly increased(P<0.05, P<0.01), while the levels of SOD, IL-10 and cGMP significantly decreased(P<0.05, P<0.01), and the changes of HYP and TP were not statistically significant. Hepatic steatosis and distortion of the radial arrangement of the liver plate cells were seen in the section images of the model group, endogenous substances were clearly separated, and 252 differential metabolites were identified in the serum samples, which were mainly involved in the metabolic pathways of purine metabolism, steroid hormone biosynthesis and pyrimidine metabolism. A total of 229 differential metabolites were identified in the liver samples, mainly involving nucleotide metabolism, purine metabolism, steroid hormone biosynthesis, pyrimidine metabolism, antifolate resistance, insulin resistance, primary bile acid biosynthesis, prostate cancer, sulfur relay system, arachidonic acid metabolism and other metabolic pathways. ConclusionThe successful establishment of liver Yin deficiency model in mice by CCl4 combined with thyroid hormone is evaluated through the investigation of serum and liver metabolomics, combined with biochemical indicators, which provides a biological basis and experimental foundation for the Yin deficiency syndrome model of TCM.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 166-174, 2024.
Article in Chinese | WPRIM | ID: wpr-1005266

ABSTRACT

ObjectiveMetabolomics was used to reveal the mechanism of Aconiti Lateralis Radix Praeparata(ALRP) in attenuating toxicity by processing from the aspects of amino acid metabolism, oxidative stress and energy metabolism by analyzing multiple metabolic pathways. MethodTwenty-four rats were randomly divided into control group, raw group and processed group, 8 rats in each group. The raw and processed group were given with 0.64 g·kg-1 of raw ALRP and processed ALRP respectively every day, the control group was given with an equal amount of normal saline once a day. After continuous administration for 7 days, the urine, serum and heart tissue of rats were collected. Pathological examination of the heart was carried out using hematoxylin-eosin(HE) staining, and the activities of lactate dehydrogenase(LDH) and creatine kinase-MB(CK-MB) in serum and cardiac tissues were detected by microplate assay and immunoinhibition assay. The effects of ALRP on rat heart before and after processing were compared and analyzed. Ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to perform urine metabolomics analysis, and multivariate statistical analysis was used to screen for differential metabolites related to ALRP in attenuating toxicity by processing, and pathway enrichment analysis was carried out to explore the processing mechanism. ResultHE staining showed that no obvious pathological changes were observed in the heart tissue of the control group, while obvious infiltration of inflammatory cells such as plasma cells and granulocytes was observed in the heart tissue of the raw group, indicating that the raw ALRP had strong cardiotoxicity. There was no significant difference in HE staining of heart tissue between the processed group and the control group, indicating that the toxicity of ALRP was significantly reduced after processing. Compared with the control group, the activities of LDH and CK-MB were significantly increased in serum and heart tissue of the raw group, and those were significantly decreased in serum and heart tissue of the processed group, suggesting that the myocardial toxicity of processed ALRP was reduced. A total of 108 endogenous differential metabolites associated with the raw ALRP were screened using multivariate statistical analysis in positive and negative modes, of which 51 differential metabolites were back-regulated by the processed ALRP. Biological analysis of the key regulatory pathways and associated network changes showed that the pathways related to toxicity of ALRP mainly included tryptophan metabolism, arginine and proline metabolism, phenylalanine metabolism, aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism, etc. The metabolic pathways related to the attenuation of processed ALRP mainly included aminoacyl-tRNA biosynthesis, tryptophan metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism and caffeine metabolism. ConclusionThe processing technology of ALRP in Guilingji can significantly attenuate the cardiotoxicity of raw products, the mechanism mainly involves amino acid metabolism, oxidative stress and energy metabolism, which can provide experimental bases for the research related to the mechanism of toxicity reduction of ALRP by processing and its clinical safety applications.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 124-132, 2024.
Article in Chinese | WPRIM | ID: wpr-1003774

ABSTRACT

ObjectiveTo analyze the antidepressant quality markers(Q-Marker) of Bupleuri Radix(BP) before and after vinegar-processing by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), multivariate statistical analysis and network pharmacology. MethodUPLC-Q-TOF-MS was used to analyze the chemical basis of raw and vinegar-processed products of BP, and principal component analysis(PCA) orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to identify the differential components in BP that changed significantly before and after vinegar-processing, which were regarded as candidate quality markers(Q-Marker). Then the disease-drug-component-target network related to antidepressant effect of BP was constructed by network pharmacology, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined. Rats were randomly divided into blank group, model group, fluoxetine group(2.67 mg·kg-1) and total saponin group(0.72 mg·kg-1), except the blank group, rats in the other groups were subjected to chronic unpredictable mild stress(CUMS). Three weeks after the start of modeling, rats in each administration group were given the corresponding dose of drugs once a day for 4 weeks, and rats in the blank and model groups were given normal saline with dose of 10 mL·kg-1. At 1 day before modeling, 21 days and 28 days after administration, body mass weighing, sucrose preference test and open field test were performed on each group . After 28 days of administration, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect the mRNA expression levels of phosphatidylinositol 3-kinase(PI3K), protein kinase B(Akt), mammalian target of rapamycin(mTOR), glycogen synthase kinase-3β(GSK-3β), forkhead box transcription factor O3a(FoxO3a) and β-catenin in hippocampal tissues of rats in each group, while protein expression levels of PI3K, Akt, mTOR and FoxO3a in hippocampal tissues of rats in each group were detected by Western blot. ResultThere were 19 components in BP showed significant changes before and after vinegar-processing, and 9 components such as saikosaponin A, saikosaponin B1, saikosaponin B2, saikosaponin C and saikosaponin D were identified as potential Q-Marker through S-plot differential marker screening. Combined with the disease-drug-component-target network, saikosaponin A, saikosaponin B1, saikosaponin B2 and saikosaponin D were identified as antidepressant Q-Marker of raw and vinegar-processed products of BP. According to the results of pharmacodynamic tests, after 28 d of administration, compared with the blank group, the body mass, sucrose preference index and open field total score of rats in model group, fluoxetine group and total saponin group decreased significantly(P<0.01). Compared with the model group, the body mass, sucrose preference index and open field total score in total saponin group increased significantly(P<0.01). Compared with the blank group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the model group decreased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a increased significantly(P<0.05). Compared with the model group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the total saponin group were increased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a decreased significantly(P<0.05). Compared with the blank group, the protein expression levels of Akt and mTOR in hippocampus of the model group decreased significantly(P<0.01), while the protein expression levels of PI3K and FoxO3a increased significantly(P<0.01). Compared with the model group, the expression level of Akt in hippocampus of the total saponin group increased significantly(P<0.01), the mTOR expression level was increased but not statistically significant, while the protein expression levels of PI3K and FoxO3a decreased significantly(P<0.01). ConclusionThe chemical constituents of BP changed greatly after vinegar-processing, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined by chemical basis, pharmacodynamics, network pharmacology and signaling pathway, which provided a reference for further research on quality control, pharmacodynamic substance basis and processing mechanism of BP.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 179-188, 2024.
Article in Chinese | WPRIM | ID: wpr-1011457

ABSTRACT

ObjectiveTo clarify the differences in the efficacy and mechanism of different processed products of Atractylodes chinensis rhizoma by the pharmacodynamics and metabolomics studies of raw, bran-fried and rice water-processed products on rats with spleen deficiency. MethodSixty male SD rats were randomly divided into blank group, model group, raw product group(3.75 g·kg-1), bran-fried product group(3.75 g·kg-1), rice water-processed product group(3.75 g·kg-1) and Shenling Baizhusan group(6.7 g·kg-1), with 10 rats in each group. The method of excessive fatigue+improper diet was used to establish a spleen deficiency model in rats. After the end of modeling, except for the blank and model groups, each dosing group was given the corresponding drug suspension, the immune organ coefficients of each group of rats were examined, the levels of interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), immunoglobulin G(IgG), amylase(AMS), motilin(MTL), gastrin(GAS), Na+-K+-adenosine triphosphatase(ATPase), aquaporin 2(AQP2), AQP3 and AQP8 in rats were measured by enzyme-linked immunosorbent assay(ELISA). Ultra high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS) combined with orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to search for biomarkers in the plasma samples of spleen-deficient rats by using two criteria[P<0.05 and variable importance in the projection(VIP) value>1], and to compare the different modulatory effects of the three decoction pieces on the splenic-deficient biomarkers, and metabolic pathway analysis was conducted through the Kyoto Encyclopedia of Genes and Genomes(KEGG) database. ResultCompared with the blank group, the thymus index and spleen index of rats in the model group were significantly decreased(P<0.05), the levels of IL-6, TNF-α, IgG and AQP2 were significantly increased(P<0.05), the levels of AMS, GAS, MTL, AQP3, AQP8 and Na+-K+-ATPase were significantly decreased(P<0.05). Compared with the model group, raw products, bran-fried products and rice water-processed products all increased thymus index and spleen index(P<0.05), decreased IL-6, TNF-α, IgG and AQP2 levels(P<0.05), and increased AMS, GAS, MTL, AQP3, AQP8 and Na+-K+-ATPase levels to different degrees. A total of 176 differential metabolites were screened in the model group compared with the blank group, of which 75, 72 and 84 biomarkers were called back by the raw products, bran-fried products and rice water-processed products, respectively(P<0.05, P<0.01). Raw products of A. chinensis rhizoma mainly affected glycine, serine and threonine metabolism. Bran-fried products mainly affected alanine, aspartate and glutamate metabolism, D-arginine and D-ornithine metabolism. Rice water-processed products mainly affected glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism, citrate cycle, thiamine metabolism, D-arginine and D-ornithine metabolism. ConclusionRaw products, bran-fried products and rice water-processed products of A. chinensis rhizoma all have good spleen strengthening effects, among which the effects of bran-fried products and rice water-processed products were stronger. Meanwhile, raw products has the strongest dryness, followed by bran-fried products, and the weakest dryness of rice water-processed products. The three decoction pieces are able to significantly modulate metabolic abnormalities in spleen-deficient rats, and the mechanism may be related to amino acid metabolism such as glycine, serine and threonine metabolism as well as alanine, aspartate and glutamate metabolism.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 31-42, 2024.
Article in Chinese | WPRIM | ID: wpr-999158

ABSTRACT

ObjectiveBased on the quality evaluation experience of "it is better to have a fragrant and strong aroma" summarized by materia medica of past dynasties, the chemical components of Sojae Semen Nigrum(SSN) and Sojae Semen Praeparatum(SSP) were systematically compared and analyzed, and the main fermentation products in different fermentation time were quantitatively analyzed, so as to clarify the transformation law of internal components in the processing process and provide scientific basis for the modern quality control of SSP. MethodUltra performance liquid chromatography-quadrupole tandem time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used for the structural identification of the chemical constituents of SSN and SSP, and with the aid of Progenesis QI v2.3 software, the negative ion mode was employed for principal component analysis(PCA) pattern recognition, and the data were analyzed with the aid of orthogonal partial least squares-discriminant analysis(OPLS-DA) for two-dimensional data to obtain S-plot, and components with |P|>0.1 were selected as the differential constituents. The contents of isoflavonoids in SSP during fermentation was determined by UPLC, and the samples were taken every 8 h in the pre-fermentation period and every 2 d in the post-fermentation period, and the dynamic changes of isoflavonoid contents in different fermentation stages were analyzed. The contents of amino acids and nucleosides in SSP and SSN from different fermentation stages were quantitatively analyzed by phenyl isothiocyanate(PITC) pre-column derivatization and high performance liquid chromatography(HPLC) gradient elution, and the contribution of flavor substances to the "delicious" taste of SSP was discussed by taste intensity value(TAV). ResultA total of 19 kinds of differential components were screened out, mainly soybean saponins and isoflavones, and their contents decreased significantly or even disappeared after fermentation. In the pre-fermentation process of SSP, glycoside bond hydrolysis mainly occurred, and isoflavone glycosides in SSN were degraded and converted into the corresponding aglycones, the content of flavor substances such as amino acids increased gradually. In the post-fermentation process, protein degradation mainly occurred, after 8 d of post-fermentation, the content of isoflavones was basically stable, while the total content of amino acids increased by 8-40 times on average. Different amino acids form the special flavor of SSP, such as the TAV of glutamate is always ahead of other flavor substances, and sweet substances such as alanine and valine have made relatively great contributions to SSP. ConclusionBased on the law of constituent transformation, combined with the traditional evaluation index of "fragrant and strong", it is difficult to control the fermentation degree of SSP by the existing standards in the 2020 edition of Chinese Pharmacopoeia. It is suggested that description of the characteristics of SSP be refined and changed to "fragrant, delicious and slightly sweet", and at the same time, the post-fermentation index compounds such as glutamic acid, alanine and valine should be added as the quality control indicators of SSP, so as to standardize the production process and improve the quality of SSP.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 140-149, 2023.
Article in Chinese | WPRIM | ID: wpr-997667

ABSTRACT

ObjectiveTo explore the material basis of bile-processed Coptidis Rhizoma clearing excessive fire of liver-gallbladder based on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF/MS) metabolomics and molecular docking. MethodUPLC-Q-TOF/MS metabolomics was used to analyze the chemical constituents of Coptidis Rhizoma, water-processed Coptidis Rhizoma and bile-processed Coptidis Rhizoma. Chromatographic separation was achieved with 0.1% formic acid aqueous solution(A)-acetonitrile(B) as the mobile phase in gradient elution(0-2 min, 5%B; 2-20 min, 5%-65%B; 20-40 min, 65%-10%B; 40-45 min, 10%B; 45-46 min, 10%-95%B; 46-49 min, 95%B), and electrospray ionization(ESI) was applied and operated in positive and negative ion modes, the acquisition range was m/z 80-1 200. Based on this, partial least squares-discriminant analysis(PLS-DA) and variance analysis were used to screen the differential compounds among the three products of Coptidis Rhizoma. Network pharmacology and molecular docking were used to verify the degree of association between differential compounds and excessive fire of liver-gallbladder syndrome. ResultA total of 33 chemical constituents were identified, including 2 phenolic acids, 5 binding bile acids and 26 alkaloids. And 16 differential compounds were identified by multivariate statistical analysis, including 11 alkaloids and 5 binding bile acids. Pathway enrichment analysis in the Kyoto Encyclopedia of Genes and Genomes(KEGG) database yielded 8 pathways related to excessive fire of liver-gallbladder, and the key protein phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform(PIK3CA) was obtained according to the "component-target-pathway" network analysis. Molecular docking results showed that 11 alkaloids had good binding ability with PIK3CA. ConclusionPorcine bile is unique in the processing of bile-processed Coptidis Rhizoma, which can promote the production and dissolution of 11 alkaloids, including berberine and dihydrochelerythrine. Based on the results of molecular docking and reported pharmacological experiments, it can be concluded that 16 different compounds such as berberine, dihydrochelerythrine and taurohyodeoxycholic acid are the material basis of bile-processed Coptidis Rhizoma.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 122-130, 2023.
Article in Chinese | WPRIM | ID: wpr-997665

ABSTRACT

ObjectiveBased on serum pharmacochemistry and ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) the transitional components in the serum of rats after intragastric administration of water extract of Alismatis Rhizoma(AR)and salt-processed Alismatis Rhizoma(SAR) were compared. MethodSD rats were randomly divided into blank group, AR group(10 g·kg-1) and SAR group(10 g·kg-1), 3 rats in each group, the administration groups were given AR and SAR aqueous extracts by gavage, respectively, and the blank group was given an equal volume of drinking water by gavage once in the morning and once in the evening, for 3 consecutive days. Sixty minutes after the last administration, blood was collected from the eye orbits, and the serum samples were prepared. The serum samples were prepared on an ACQUITY UPLC BEH C18 column(2.1 mm×50 mm, 1.7 μm) with the mobile phase of acetonitrile(A)-0.1% formic acid aqueous solution(B) in a gradient elution(0-10 min, 10%-50% A; 10-27 min, 50%-95%A; 27-27.1 min, 95%-10% A; 27.1-30 min, 10%A), the data were collected at a flow rate of 0.3 mL·min-1 in positive ion mode with a scanning range of m/z 100-1 200. Based on the self-constructed chemical composition library of AR, the total ion flow diagrams and secondary MS fragmentation information of the aqueous extracts of AR and SAR, as well as the administered serum and the blank serum, were compared with each other by UNIFI 1.9.2, so as to deduce the possible blood-migrating constituents and their cleavage patterns in the aqueous extracts, and the response intensity ratios of each chemical component were calculated before and after processing. ResultA total of 20 components, including 5 prototypical components and 15 metabolites, were analyzed and deduced from the serum of rats given aqueous extract of AR. And 14 components, including 5 prototypical components and 9 metabolites, were analyzed and deduced from the serum of rats given aqueous extract of SAR. Of these, 13 components were common to both of them, including 5 prototypical components and 8 metabolites. The 5 prototypical components were 16-oxoalisol A, alisol A 24-acetate, alisol A, alisol B and alisol C. The metabolites were mainly involved in phase Ⅰ metabolism(oxidation) and phase Ⅱ metabolism(glucuronidation). There was a big change in the intensity of response of the common components before and after salt-processing, and the response intensities of the prototypical components, 16-oxoalisol A, alisol B and alisol C, were elevated, while the type and response intensity of metabolites were generally decreased, and it was hypothesized that the metabolic rate of terpenoids might be slowed down after salt-processing of AR, so that the blood-migrating constituents could participate in the metabolism of the body more in the form of prototypes. ConclusionSalt-processing of AR may promote the absorption of prototypical components into the blood by slowing down the metabolic rate of terpenoids, which can provide support for the research on material basis of AR and SAR.

9.
Chinese Pharmacological Bulletin ; (12): 357-366, 2023.
Article in Chinese | WPRIM | ID: wpr-1013864

ABSTRACT

Aim To explore the mechanism of process¬ing and increasing efficiency of Arisaematis rhizomz preparatum. Methods UPLC-Q-TOF-MS/MS tech¬nology was used to detect the chemical components be¬fore and after processing of Arisaematis rhizomz prepara¬tum, and its mechanism of action was analysed in the treatment of 44 asthma and phlegm " by using network pharmacology. A rat model of allergic asthma was es- tablished to compare the efficacy of Arisaematis rliizoma before and after processing. Results A total of 27 chemical components were identified, among which cur- cumin ,6-gingerol and other components increased after processing. Combined with the database prediction, the action mechanism of the 36 chemical components in the treatment of 44 asthma and phlegm" diseases was dis¬cussed and predicted through network pharmacology. The results of animal experiments showed that the effect of processed Arisaematis rhizoma on allergic asth¬ma was better than that of Arisaematis rhizoma, but there was no significant difference. Conclusions The addition of curcumin, 6-gingerol, camphor, demethyl- curcumin and other components after the processed Ari¬saematis rhizomz preparatum may be the reason for the synergistic effect of Arisaematis rhizomz preparatum in the treatment of allergic asthma.

10.
Chinese Pharmacological Bulletin ; (12): 489-497, 2023.
Article in Chinese | WPRIM | ID: wpr-1013832

ABSTRACT

Aim To prepare the sea cucumber enzy¬molysis fermentation liquid (SCEFL) by enzymatic hydrolysis of protease and fermentation of probiotics and to investigate the effect of SCEFL on the immunosup-pression induced by cyclophosphamide in mice and to explore its mechanism by metabomic method. Methods The immunosuppressive model was induced by in-traperitoneal injection of cyclophosphamide. C57BL/6J mice were randomly divided into normal group, model group, Levamisole group, SCEFL groups (at low, medium and high doses). The pathological changes of spleen were observed by HE staining. The proportion of CD4

11.
Chinese Pharmacological Bulletin ; (12): 1303-1311, 2023.
Article in Chinese | WPRIM | ID: wpr-1013762

ABSTRACT

Aim To explore the effects of isovitexin (IVT) on alcoholic fatty liver disease (AFLD) and its mechanism based on metabolomics and in vivo methods and combined molecular docking. Methods 8-week-old male C57BL/6J mice were randomly divided into control, model and IVT groups, with 6 mice in each group. The control group was fed with alcoholic liquid feed control feed, the model group and IVT group were fed with alcoholic liquid feed model feed, and the IVT group was fed daily gastric IVT (100 mg • kg

12.
Digital Chinese Medicine ; (4): 426-437, 2023.
Article in English | WPRIM | ID: wpr-1011486

ABSTRACT

Objective @#To identify the main components in the extracts of different parts of Juandan Baihe (Lilium lancifolium) by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) technology and investigate their hypoglycemic activities.@*Methods@#The MS fragmentation pathways of the main types of compounds in Juandan Baihe (Lilium lancifolium) were studied, and the main components in the extracts were systematically identified using MS fragmentation pathways combined with MS mining technology. Based on the hyperglycemia male mouse model [specific pathogen free (SPF)-grade Kunming mice] induced by streptozotocin (intragastric administration of 80 mg/kg for 3 d), the hypoglycemic effects of extracts of Juandan Baihe (Lilium lancifolium) roots, stems, corms, leaves, and flowers were evaluated by measuring the changes of blood glucose, daily water consumption, daily food intake, and body weight.@*Result@#The MS fragmentation pathways of regalosides, dioscins, phenylpropanoids, flavonoids, and chlorogenic acids in Juandan Baihe (Lilium lancifolium) were clarified, and a mining method for compounds in this plant was constructed. A total of 58 compounds, including 6 chlorogenic acids, 14 regalosides, 13 phenylpropanoids, 5 flavonoids, and 20 dioscins, were identified from the roots, stems, corms, leaves, and flowers of Juandan Baihe (Lilium lancifolium). Among them, 30 compounds were reported for the first time from this plant. The root and corm extracts demonstrated significant hypoglycemic activities by reducing blood glucose levels from 23.76 ± 1.21 and 24.29 ± 1.35 mmol/L to 17.21 ± 1.23 and 18.78 ± 1.49 mmol/L, respectively (P < 0.05). The roots and corms extracts could also attenuate the symptoms of polydipsia (P < 0.01), polyphagia (P < 0.05), and weight loss caused by diabetes.@*Conclusion@#This study clarifies that the roots of Juandan Baihe (Lilium lancifolium) are rich in regalosides and dioscins for the first time, and have significant hypoglycemic activities, providing the foundation for the comprehensive utilization of this plant and the development of hypoglycemic drugs.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 176-186, 2023.
Article in Chinese | WPRIM | ID: wpr-984596

ABSTRACT

ObjectiveA rapid method for identification of chemical constituents in Puerariae Lobatae Radix dispensing granules was established in order to clarify the material basis. MethodThe chemical constituents of Puerariae Lobatae Radix dispensing granules was qualitatively analyzed by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) under positive and negative ion modes, and the chromatographic conditions were on an ACQUITY UPLC HSS T3 column(2.1 mm×100 mm, 1.8 μm) with 0.1% formic acid aqueous solution(A)-0.1% formic acid acetonitrile solution(B) as mobile phase for gradient elution(0-4 min, 5%-10%B; 4-10 min, 10%-15%B; 10-20 min, 15%-16%B; 20-27 min, 16%-31%B; 27-33 min, 31%-59%B; 33-42 min, 59%-95%B; 42-42.1 min, 95%-5%B; 42.1-45 min, 5%B), the flow rate was 0.35 mL·min-1, the column temperature was 40 ℃, the injection volume was 5 μL, and electrospray ionization(ESI) was selected. Then these chemical constituents were comprehensively identified based on PeakView 1.2, PubChem, ChemicalBook, ChemSpider, comparative control profiles and literature information. ResultA total of 128 chemical constituents were identified from the dispensing granules, including 60 flavonoids, 26 organic acids, 7 glycosides, 6 coumarins, 3 nucleosides and 26 other compounds. By focusing on the cleavage patterns of flavonoids, organic acids, glycosides, coumarins, nucleosides and other compounds, 12 compounds that have not been reported in Puerariae Lobatae Radix species were identified from the dispensing granules. ConclusionThe established method can systematically and rapidly identify the chemical constituents in Puerariae Lobatae Radix dispensing granules, and cleared it composition is mainly flavonoids and organic acids. Laying a foundation for the study of the material basis, mechanism of action and clinical application of the dispensing granules.

14.
China Pharmacy ; (12): 935-940, 2023.
Article in Chinese | WPRIM | ID: wpr-972263

ABSTRACT

OBJECTIVE To analyze the main components of Chelidonii Herba-Corydalis Rhizoma (CHCR), and to predict pharmacodynamic substances against estrogen receptor (ER) -positive breast cancer and their potential targets and signaling pathways, followed by verifying experiments. METHODS The ethanol extract of CHCR was analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). The network pharmacology analysis was performed for the screened components. The network diagram of CHCR “active components-target-pathway” was constructed, and the enrichment pathway in vitro was validated. RESULTS A total of 58 chemical components were identified, including 57 alkaloids and 1 organic acid. A total of 38 active ingredients were screened from the network pharmacology, and 38 core targets were found in the protein-protein interaction network of “component-disease” intersection targets; 258 gene ontology entries and 137 Kyoto encyclopedia of genes and genomics pathways were obtained, mainly including estrogen signal pathway, phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signal pathway, etc. The results of validation test showed that the median inhibitory concentration of CHCR to MCF-7 cells was 693 μg/mL; 150, 300, 600 μg/mL CHCR could significantly reduce the expressions of phosphorylated PI3K, phosphorylated Akt, ERα protein and ESR1 mRNA (P<0.01). CONCLUSIONS The anti-ER-positive breast cancer effect of CHCR may be related to the regulation of ER and PI3K/Akt pathways, which has the characteristics of multi-component and multi-target effects.

15.
China Pharmacy ; (12): 315-320, 2023.
Article in Chinese | WPRIM | ID: wpr-961665

ABSTRACT

OBJECTIVE To study the pharmacological basis of Schisandra chinensis in the treatment of allergic asthma. METHODS The common components of 10 batches of S. chinensis from different habitats were analyzed by UPLC-Q-TOF-MS/MS. Furthermore, the allergic asthma model was established by intraperitoneal injection of ovalbumin (OVA) and aluminum hydroxide for stimulation combined with atomization exitation; general behavioral observation and the contents of interferon γ (IFN-γ), interleukin-4 (IL-4) and immunoglobulin E (IgE) in serum were taken as criteria for evaluating the therapeutic effect of S. chinensis from different habitats in the treatment of allergic asthma. Correlation coefficients between common peak area and efficacy evaluation index of each batch of medicinal material were analyzed through grey correlation degree and Pearson correlation analysis. RESULTS A total of 21 common components were identified in 10 batches of S. chinensis from different habitats. After administration of S. chinensis, symptoms such as shortness of breath, sneezing and curling of rats were alleviated. In addition, the content of IFN-γ was significantly increased while the contents of IL-4 and IgE in serum were distinctly decreased (P<0.01). Grey correlation analysis showed that 11 common components had high correlation coefficients with IFN-γ, IL-4 and IgE (rˉ>0.8). Pearson correlation analysis showed that 8 components were significantly positively correlated with the content of IFN-γ (P< 0.05), and 9, 8 components were significantly negatively correlated with the content of IL-4 and IgE (P<0.05). Based on the results of grey correlation degree and Pearson correlation analysis, 7 components such as peak 3, 4, 6, 7, 9, 19 and 20, were highly related to S. chinensis in the treatment of allergic asthma. CONCLUSIONS Schisandrol A, schisandrin B, schisandrin C, gomisin M2, gomisin J, pregomisin and angeloylgomisin H are the potential pharmacodynamic substance basis of S. chinensis in the treatment of allergic asthma.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 134-143, 2023.
Article in Chinese | WPRIM | ID: wpr-953933

ABSTRACT

ObjectiveTo investigate the relative content changes of differential metabolites and reducing sugars during the processing process of Rehmanniae Radix Praeparata (RRP) processed with Amomi Fructus (AF) and Citri Reticulatae Pericarpium (CRP), and to lay the foundation for revealing the processing principle of this characteristic variety. MethodThe samples of the 0-54 h processing process of RRP processed with AF and CRP were taken as the research object, and their secondary metabolites were detected by ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The 0.1% formic acid aqueous solution (A)-acetonitrile (B) was used as the mobile phase for gradient elution (0-1 min, 1%-3%B; 1-10 min, 3%-9%B; 10-15 min, 9%-12%B; 15-22 min, 12%-18%B; 22-31 min, 18%-24%B; 31-35 min, 24%-100%B; 35-36 min, 100%-5%B; 36-40 min, 5%-1%B; 40-45 min, 1%B), column temperature was 40 ℃, injection volume was 3 μL, flow rate was 0.3 mL·min-1. Electrospray ionization (ESI) was used to scan and collect MS data in the negative ion mode, the scanning range was m/z 50-1 250. Data analysis was carried out using PeakView 1.2 software, and the chemical composition of RRP processed with AF and CRP was identified by combining the literature information and chemical composition databases. The MS data were normalized by MarkerView 1.2, and then the multivariate statistical analysis was applied to screen the differential metabolites, and the changes of the relative contents of the differential metabolites with different processing times was analyzed, finally, correlation analysis was performed between the differential metabolites, the change of the reducing sugar content was combined to determine the most suitable processing time of RRP processed with AF and CRP. ResultA total of 121 compounds were identified from RRP processed with AF and CRP at different processing times, and 12 differential metabolites were screened out by multivariate statistical analysis, including catalpol, hesperidin, isoacteoside, acteoside, narirutin, echinacoside, isomartynoside, decaffeoylacteoside, 6-O-E-feruloylajugol, dihydroxy-7-O-neohesperidin, jionoside D, and rehmapicroside. With the prolongation of processing time, the relative contents of these 12 differential metabolites and reducing sugars changed slightly at 52-54 h. ConclusionUPLC-Q-TOF-MS can comprehensively and accurately identify the chemical constituents of RRP processed with AF and CRP at different processing times, and the suitable processing time of 52-54 h is determined according to the content changes of different metabolites and reducing sugars, which provides a basis for revealing the scientific connotation of the processing principle of this variety.

17.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 459-480, 2023.
Article in English | WPRIM | ID: wpr-982717

ABSTRACT

Chang-Kang-Fang (CKF) formula, a Traditional Chinese Medicine (TCM) prescription, has been widely used for the treatment of irritable bowel syndrome (IBS). However, its potential material basis and underlying mechanism remain elusive. Therefore, this study employed an integrated approach that combined ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) with network pharmacology to systematically characterize the phytochemical components and metabolites of CKF, as well as elucidating its underlying mechanism. Through this comprehensive analysis, a total of 150 components were identified or tentatively characterized within the CKF formula. Notably, six N-acetyldopamine oligomers from CicadaePeriostracum and eight resin glycosides from Cuscutae Semen were characterized in this formula for the first time. Meanwhile, 149 xenobiotics (58 prototypes and 91 metabolites) were detected in plasma, urine, feces, brain, and intestinal contents, and the in vivo metabolic pathways of resin glycosides were elaborated for the first time. Furthermore, network pharmacology and molecular docking analyses revealed that alkaloids, flavonoids, chromones, monoterpenes, N-acetyldopamine dimers, p-hydroxycinnamic acid, and Cus-3/isomer might be responsible for the beneficial effects of CKF in treating IBS, and CASP8, MARK14, PIK3C, PIK3R1, TLR4, and TNF may be its potential targets. These discoveries offer a comprehensive understanding of the potential material basis and clarify the underlying mechanism of the CKF formula in treating IBS, facilitating the broader application of CKF in the field of medicine.


Subject(s)
Humans , Tandem Mass Spectrometry/methods , Irritable Bowel Syndrome/drug therapy , Molecular Docking Simulation , Drugs, Chinese Herbal/chemistry , Glycosides , Chromatography, High Pressure Liquid/methods
18.
China Journal of Chinese Materia Medica ; (24): 1620-1631, 2023.
Article in Chinese | WPRIM | ID: wpr-970634

ABSTRACT

The study identified the blood-entering components of Sijunzi Decoction after gavage administration in rats by UPLC-Q-TOF-MS/MS, and investigated the mechanism of Sijunzi Decoction in treating Alzheimer's disease by virtue of network pharmacology, molecular docking, and experimental verification. The blood-entering components of Sijunzi Decoction were identified based on the mass spectra and data from literature and databases. The potential targets of the above-mentioned blood-entering components in the treatment of Alzheimer's disease were searched against PharmMapper, OMIM, DisGeNET, GeneCards, and TTD. Next, STRING was employed to establish a protein-protein interaction(PPI) network. DAVID was used to perform the Gene Ontology(GO) annotation and the Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. Cytoscape 3.9.0 was used to carry out visual analysis. AutoDock Vina and PyMOL were used for molecular docking of the blood-entering components with the potential targets. Finally, the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway enriched by the KEGG analysis was selected for validation by animal experiments. The results showed that 17 blood-entering components were detected in the serum samples after administration. Among them, poricoic acid B, liquiritigenin, atractylenolide Ⅱ, atractylenolide Ⅲ, ginsenoside Rb_1, and glycyrrhizic acid were the key components of Sijunzi Decoction in treating Alzheimer's disease. HSP90AA1, PPARA, SRC, AR, and ESR1 were the main targets for Sijunzi Decoction to treat Alzheimer's disease. Molecular docking showed that the components bound well with the targets. Therefore, we hypothesized that the mechanism of Sijunzi Decoction in treating Alzheimer's disease may be associated with the PI3K/Akt, cancer treatment, and mitogen-activated protein kinase(MAPK) signaling pathways. The results of animal experiments showed that Sijunzi Decoction significantly attenuated the neuronal damage in the hippocampal dentate gyrus area, increased the neurons, and raised the ratios of p-Akt/Akt and p-PI3K/PI3K in the hippocampus of mice. In conclusion, Sijunzi Decoction may treat Alzheimer's disease by activating the PI3K/Akt signaling pathway. The findings of this study provide a reference for further studies about the mechanism of action and clinical application of Sijunzi Decoction.


Subject(s)
Animals , Mice , Rats , Proto-Oncogene Proteins c-akt , Network Pharmacology , Alzheimer Disease/drug therapy , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/genetics , Tandem Mass Spectrometry , Drugs, Chinese Herbal/pharmacology
19.
China Journal of Chinese Materia Medica ; (24): 1606-1619, 2023.
Article in Chinese | WPRIM | ID: wpr-970633

ABSTRACT

This study aimed to evaluate the biological effect and mechanism of Vernonia anthelmintica Injection(VAI) on melanin accumulation. The in vivo depigmentation model was induced by propylthiouracil(PTU) in zebrafish, and the effect of VAI on melanin accumulation was evaluated based on the in vitro B16F10 cell model. The chemical composition of VAI was identified according to the high-performance liquid chromatography quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS). Network pharmaco-logy was applied to predict potential targets and pathways of VAI. A "VAI component-target-pathway" network was established, and the pharmacodynamic molecules were screened out based on the topological characteristics of the network. The binding of active molecules to key targets was verified by molecular docking. The results showed that VAI promoted tyrosinase activity and melanin production in B16F10 cells in a dose-and time-dependent manner and could restore the melanin in the body of the zebrafish model. Fifty-six compounds were identified from VAI, including flavonoids(15/56), terpenoids(10/56), phenolic acids(9/56), fatty acids(9/56), steroids(6/56), and others(7/56). Network pharmacological analysis screened four potential quality markers, including apigenin, chrysoeriol, syringaresinol, and butein, involving 61 targets and 65 pathways, and molecular docking verified their binding to TYR, NFE2L2, CASP3, MAPK1, MAPK8, and MAPK14. It was found that the mRNA expression of MITF, TYR, TYRP1, and DCT in B16F10 cells was promoted. By UPLC-Q-TOF-MS and network pharmacology, this study determined the material basis of VAI against vitiligo, screened apigenin, chrysoeriol, syringaresinol, and butein as the quality markers of VAI, and verified the efficacy and internal mechanism of melanogenesis, providing a basis for quality control and further clinical research.


Subject(s)
Animals , Vernonia/chemistry , Melanins/metabolism , Zebrafish/metabolism , Network Pharmacology , Molecular Docking Simulation , Apigenin/pharmacology , Drugs, Chinese Herbal/pharmacology , Chromatography, High Pressure Liquid
20.
China Journal of Chinese Materia Medica ; (24): 1249-1263, 2023.
Article in Chinese | WPRIM | ID: wpr-970596

ABSTRACT

The chemical components of Huanglian Decoction were identified by ultra-performance liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry(UPLC-Q-TOF-MS/MS) technology. The gradient elution was conducted in Agilent ZORBAX Extend-C_(18) column(2.1 mm×100 mm, 1.8 μm) with the mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B) at a flow rate of 0.3 mL·min~(-1) and the column temperature of 35 ℃. The MS adopted the positive and negative ion mode of electrospray ionization(ESI), and the MS data were collected under the scanning range of m/z 100-1 500. Through high-resolution MS data analysis, combined with literature comparison and confirmation of reference substances, this paper identified 134 chemical components in Huanglian Decoction, including 12 alkaloids, 23 flavonoids, 22 terpenes and saponins, 12 phenols, 7 coumarins, 12 amino acids, 23 organic acids, and 23 other compounds, and the medicinal sources of the compounds were ascribed. Based on the previous studies, 7 components were selected as the index components. Combined with the network pharmacology research and analysis me-thods, the protein and protein interaction(PPI) network information of the intersection targets was obtained through the STRING 11.0 database, and 20 core targets of efficacy were screened out. In this study, UPLC-Q-TOF-MS/MS technology was successfully used to comprehensively analyze and identify the chemical components of Huanglian Decoction, and the core targets of its efficacy were discussed in combination with network pharmacology, which laid the foundation for clarifying the material basis and quality control of Huanglian Decoction.


Subject(s)
Tandem Mass Spectrometry , Network Pharmacology , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Technology
SELECTION OF CITATIONS
SEARCH DETAIL