Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Indian J Biochem Biophys ; 2012 Oct; 49(5): 295-305
Article in English | IMSEAR | ID: sea-143551

ABSTRACT

Hydroxyl radicals (HO·) are derived in Fenton reaction with ferrous salt and H2O2 in acid medium, and at neutral pH, metal-oxyl radicals (M-O·) predominate. Evidence is accumulating that M-O· radicals are also active in oxidation reactions, in addition to metal-oxo (M=O) now shown in many publications. Reactivity of these radicals gives selective oxidized products useful in cellular activities, in contrast to purported indiscriminate cell damage by hydroxyl radicals. Reactions with vanadium compounds, such as diperoxovanadate, peroxo-bridged mixed valency divanadate, vanadium-oxyl radical, tetravalent vanadyl and decavanadate illustrates selective gain in oxidative capacity of oxo- and oxyl- species. Occurrence of ESR signals typical of hydroxyl radicals is demonstrated in cell homogenates and tissue perfusates treated with spin trap agents. It is known for a long time lipid peroxides are formed in tissue microsomal systems exclusively in presence of salts of iron, among many metals tested. Oxygen and a reducing agent, ascorbate (non-enzymic) or NADPH (enzymic) are required to produce 'ferryl', the chelated Fe=O active form (possibly Fe-O· and Fe-O-O-Fe ?) for the crucial step of H-atom abstraction. Yet literature is replete with unsupported affirmations that hydroxyl radicals initiate lipid peroxidation, an unexplained fixation of mindset. The best-known ·OH generator, a mixture of ferrous salt and H2O2, does not promote lipid peroxidation, nor do the many hydroxyl radical quenching agents stop it. The availability of oxo and oxyl-radical forms with transition metals, and also with non metals, P, S, N and V, calls for expansion of vision beyond superoxide and hydroxyl radicals and explore functions of multiple oxygen radicals for their biological relevance.


Subject(s)
Hydroxyl Radical , Lipid Peroxidation , Antioxidants/metabolism , Iron/metabolism , Metals/metabolism , Oxidants/metabolism , Vanadates
2.
Experimental & Molecular Medicine ; : 118-124, 2003.
Article in English | WPRIM | ID: wpr-18466

ABSTRACT

Pervanadate, a complex of vanadate and H2O2, has an insulin mimetic effect, and acts as an inhibitor of protein tyrosine phosphatase. Pervanadate-induced phospholipase D (PLD) activation is known to be dependent on the tyrosine phosphorylation of cellular proteins and protein kinase C (PKC) activation, and yet underlying molecular mechanisms are not clearly understood. Here, we investigated the signaling pathway of pervanadate-induced PLD activation in Rat2 fibroblasts. Pervanadate increased PLD activity in dose- and time- dependent manner. Protein tyrosine kinase inhibitor, genistein, blocked PLD activation. Interestingly, AG-1478, a specific inhibitor of the tyrosine kinase activity of epidermal growth factor receptor (EGFR) blocked not only the PLD activation completely but also phosphorylation of p38 mitogen- activated protein kinase (MAPK). However, AG-1295, an inhibitor specific for the tyrosine kinase activity of pletlet drived growth factor receptor (PDGFR) did not show any effect on the PLD activation by pervanadate. We further found that pervanadate increased phosphorylation levels of p38, extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK). SB203580, a p38 MAPK inhibitor, blocked the PLD activation completely. However, the inhibitions of ERK by the treatment of PD98059 or of JNK by the overexpression of JNK interacting peptide JBD did not show any effect on pervanadate-induced PLD activation. Inhibition or down-regulation of PKC did not alter the pervanadate-induced PLD activation in Rat2 cells. Thus, these results suggest that pervanadate-induced PLD activation is coupled to the transactivation of EGFR by pervanadate resulting in the activation of p38 MAP kinase.


Subject(s)
Animals , Rats , Cell Line , Enzyme Activation/drug effects , Fibroblasts , Mitogen-Activated Protein Kinases/metabolism , Phospholipase D/metabolism , ErbB Receptors/agonists , Vanadates/pharmacology , src-Family Kinases/metabolism
3.
Chinese Journal of Geriatrics ; (12)2000.
Article in Chinese | WPRIM | ID: wpr-538079

ABSTRACT

Objective To study the proliferation promoting effect on osteoblast cells induced by sodium orthovanadate and whether nitric oxide (NO) was involved in this process. Methods MTT assay was employed to determine cell proliferation and its inhibition. The level of NO was measured by enzyme reduction method. Results The MTT values of MC3T3-E1 cells under the 2.5,5.0,10.0 ?mol/L of sodium orthovanadate were 0.3380?0.0045, 0.3400?0.0141, 0.3840?0.0313 respectively, which were higher than in control group (0.2540?0.0167)(P

SELECTION OF CITATIONS
SEARCH DETAIL