Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article | IMSEAR | ID: sea-186068

ABSTRACT

Head trauma can have immediate transient symptoms, or lead to chronic signs and symptoms. The apparent seriousness of head injury can be misleading. Minor trauma can result in serious problems. In treating traumatic brain injury, viewing images of the brain, particularly injured areas, is crucial for planning treatment. Images of the brain may be obtained through computed tomography (CT) or MRI. These techniques permit imaging of the brain for both diagnosis of injury and choosing therapeutic interventions. Method Fifty patients presented with head injury referred for CT scan and MRI of all the age group were included in the study. Nonenhanced CT scan of brain was performed on a dual slice (multislice) high speed GE machine. A slice thickness of 5 mm was used in all studies. MRI scan of brain was performed on a general electrical permanent 0.2 TESLA Signa Profile-i SR42 machine. Results Most of the patients (52%) were between the age group of 19 and 49 years. Subarachnoid haemorrhage, cranial fractures, cerebral contusion, and diffuse axonal injury were common head injuries. Subdural hematoma was seeen in all cases in FLAIR sequences. Sensitivity of T2WI was less as compared to T1WI and FLAIR sequences. FLAIR is more sensitive than CT in detecting subdural hematoma. FLAIR sequence picked up all subarachnoid haemorrhage cases followed by GRE and T1WI. T2 is not a routine sequence in detecting subarachnoid haemorrhage. MR (FLAIR) is more useful than CT in detecting subarachnoid haemorrhage. Temporal lobe was common site for contusions followed by frontal, parietal, and occipital lobe. Grey-white matter junction was the most common site followed by corpus callosum. MRI is more sensitive than CT in detecting nonhaemorrhagic contusions. FLAIR, T2WI are more sensitive than T1WI and CT in detecting nonhaemorrhagic contusions. Posterior cerebral artery territory infarcts were common. Encephalomalacia and gliosis are more common in frontal lobe followed by temporal lobe. Conclusion FLAIR sequence picked up subarachnoid haemorrhage in all cases followed by GRE and T1WI. MRI was more sensitive in detecting contusions than CT. Grey-white matter junction was the most common site of diffuse axonal injury followed by corpus callosum. Nonhaemorrhagic DAI were common. MRI is more sensitive than CT in detecting haemorrhagic and nonhaemorrhagic DAI. FLAIR, T2WI are more sensitive than T1WI and CT in detecting nonhaemorrhagic contusions. GRE and FLAIR are more sensitive than T1WI and CT in detecting brainstem injuries.

2.
Journal of Cardiovascular Ultrasound ; : 192-195, 2011.
Article in English | WPRIM | ID: wpr-111076

ABSTRACT

Pectus excavatum exists as varying anatomic deformities and compression of the right heart by the chest wall can lead to patient symptoms including dyspnea and chest pain with exertion. Echocardiography can be difficult but is critical to the evaluation and diagnosis of this patient population. Modifying standard views such as biplane transthoracic and 3-D transesophageal views may be necessary in some patients due to limitations from the abnormal anatomy of the deformed anterior chest wall. Apical four-chamber views when seen clearly can usually visualize any extrinsic compression to the right ventricle of the heart.


Subject(s)
Humans , Chest Pain , Congenital Abnormalities , Dyspnea , Echocardiography , Funnel Chest , Heart , Heart Ventricles , Thoracic Wall
SELECTION OF CITATIONS
SEARCH DETAIL