Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Journal of Medical Biomechanics ; (6): E508-E514, 2020.
Article in Chinese | WPRIM | ID: wpr-862377

ABSTRACT

The aerodynamic characteristics of bobsleigh play a very important role in the result of the race. In order to improve the performance, it is necessary to optimize the bobsleigh aerodynamics and reduce its aerodynamic drag as much as possible. Foreign scholars has mainly used computational fluid dynamics (CFD) numerical simulation, wind tunnel experiments and other methods to study the aerodynamic characteristics and optimize drag reduction method, but the relevant research has not yet been carried out in China. In order to have a clear understanding of the technical requirements of bobsleigh aerodynamic optimization and drag reduction, the research result of bobsleigh aerodynamics in recent 20 years have been systematically combed, mainly including numerical simulations and wind tunnel experiments of aerodynamic optimization of bobsleigh body shape and athletes’ positions and attitudes in the bobsleigh, and the possible future development direction of bobsleigh aerodynamics research has been put forward: the systematic study of bobsleigh aerodynamics optimization and comprehensive assessment of bobsleigh aerodynamic drag reduction effects; the study on the interaction between athlete glide control and bobsleigh aerodynamics. These studies will provide an important scientific guidance for the optimization and improvement of bobsleigh sports equipment and the daily training of athletes.

2.
Rev. colomb. cardiol ; 18(2): 89-99, mar.-abr. 2011.
Article in Spanish | LILACS | ID: lil-594830

ABSTRACT

INTRODUCCIÓN: las prótesis valvulares cardiacas se evalúan mediante diferentes técnicas que involucran ensayos in vitro y métodos computacionales, además de los estudios clínicos convencionales. Los datos funcionales a evaluar reflejan la necesidad de contar con métodos de gran sensibilidad para determinar su operación en condiciones que emulen situaciones hemodinámicas específicas. Con este objetivo se proyectó un método alternativo que ayuda a un mejor entendimiento de la funcionalidad de estos dispositivos, analizando el comportamiento fluidodinámico in vitro de dos modelos de válvulas mecánicas cardiacas mediante un túnel de viento. MÉTODOS: se diseñó y desarrolló un túnel de viento disponiendo condiciones instrumentales que permitieran evaluar las válvulas mecánicas en distintas situaciones fluidodinámicas: túnel subsónico de sección circular (norma ANSI/AMCA_210-99 y ANSI/ASHRAE_51-99). Empleando el método de similitud dinámica se caracterizó la experimentación utilizando valores típicos de caudales y propiedades de la sangre en un adulto sano. RESULTADOS Y DISCUSIÓN: se evaluaron dos modelos valvulares tipo SJM®, uno de valvas planas y una variante de valvas convexas, con flujos de aire equivalentes a caudales sanguíneos de 1,5, 6,0 y 9,3 L/min. La prótesis de valvas convexas presenta un flujo dividido en tres campos equivalentes, a diferencia de la de valvas planas que tiene un flujo más pequeño en la parte central y dos laterales predominantes. El fenómeno de arrastre producido por las dos corrientes externas con respecto a la central, genera un RNS mayor para la válvula tipo SJM® que para la variante con valvas convexas. El campo de velocidad adyacente al lado convexo, se halla menos afectado por la turbulencia que en el caso de la valva plana; pero al contrario, el campo adyacente al lado cóncavo está más afectado por fenómenos fluidodinámicos locales: cambios de dirección, reducción de área y aumento de velocidad...


INTRODUCTION: prosthetic heart valves are evaluated using different techniques that involve in vitro studies and computational methods in addition to conventional clinical studies. Functional data to evaluate reflect the need for highly sensitive methods to determine its operating conditions that may emulate specific hemodynamic situations. With this objective, we designed an alternative method for better understanding the functionality of these models, analyzing in vitro fluid dynamic behavior of two models of mechanical heart valves using a wind tunnel. METHODS: we designed and developed a wind tunnel providing instrumental conditions that permit the evaluation of mechanical valves in different fluid dynamic conditions: subsonic tunnel of circular section (standard ANSI/AMCA_210-99 and ANSI/ASHRAE_51-99). Using the method of dynamic similarity, the experiment was characterized using typical values of flow rates and blood properties in a healthy adult. RESULTS AND DISCUSSION: we evaluated two SJM® valve models, one with flat leaflet, and a variant of convex valves with air flows equivalent to blood flow rates of 1.5, 6.0 and 9.3 L/min. The convex valve prosthesis has a flow divided in three equivalent fields, in contrast to the flat valves that have a smaller central flow and two predominant laterals. The drag phenomenon produced by the two external currents wit regard to the central generates a higher RNS for the SJM® valve than the generated for the variant of convex valves. The velocity field adjacent to the convex side is less affected by turbulence than in the case of the flat leaflet, but on the contrary, the adjacent field to the concave side is more affected by local fluid dynamic effects: changes in direction, area reduction and increased velocity...


Subject(s)
Heart Valve Prosthesis , Hemodynamics
3.
Journal of Environment and Health ; (12)1993.
Article in Chinese | WPRIM | ID: wpr-548511

ABSTRACT

Objective To verify the flow field performance of the air dynamic wind tunnel. Methods The performance of the flow field was evaluated by testing the flow speed of sample-point on the sample-transect of the tunnel. Results Among the flow range of the tunnel, the relative deviations of the speeds of each sample-point on the sample-transect were less than 10%. When the flow rate was set, the relative deviations of the sample-transect average speed in different test period were less than 10%. The ratio of average wind velocity of upper reach to down reach of the tunnel was between 0.92 and 1.03. Conclusion The flow field of the air dynamic wind tunnel is even, stable and coincident.

SELECTION OF CITATIONS
SEARCH DETAIL