Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Genet. mol. biol ; 32(2): 382-388, 2009. tab
Article in English | LILACS | ID: lil-513961

ABSTRACT

The wing Somatic Mutation and Recombination Test (SMART) in D. melanogaster was used to study genotoxicity of the medicinal plant Tabebuia impetiginosa. Lapachol (naphthoquinone) and β-lapachone (quinone) are the two main chemical constituents of T. impetiginosa. These compounds have several biological properties. They induce apoptosis by generating oxygen-reactive species, thereby inhibiting topoisomerases (I and II) or inducing other enzymes dependent on NAD(P)H:quinone oxidoreductase 1, thus affecting cell cycle checkpoints. The SMART was used in the standard (ST) version, which has normal levels of cytochrome P450 (CYP) enzymes, to check the direct action of this compound, and in the high bioactivation (HB) version, which has a high constitutive level of CYP enzymes, to check for indirect action in three different T. impetiginosa concentrations (10 percent, 20 percent or 40 percent w/w). It was observed that T. impetiginosa alone did not modify the spontaneous frequencies of mutant spots in either cross. The negative results observed prompted us to study this phytotherapeuticum in association with the reference mutagen doxorubicin (DXR). In co-treated series, T. impetiginosa was toxic in both crosses at higher concentration, whereas in the HB cross, it induced a considerable potentiating effect (from ~24.0 to ~95.0 percent) on DXR genotoxity. Therefore, further research is needed to determine the possible risks associated with the exposure of living organisms to this complex mixture.

2.
Genet. mol. biol ; 31(4): 947-955, Sept.-Dec. 2008. tab
Article in English | LILACS | ID: lil-501453

ABSTRACT

Panax ginseng is one of the most widely prescribed herbal medicines for the treatment of cancer, diabetes, chronic inflammation, and neurodegenerative and cardiovascular diseases. Since the use of alternative medicines in combination with conventional therapy may increase the risk of unwanted interactions, we investigated the possible genotoxicity of a water-soluble form of the dry root of P. ginseng (2.5, 5.0 or 10.0 mg/mL) and its ability to protect against the genotoxicity of doxorubicin (DOX; 0.125 mg/mL) by using the Drosophila melanogaster wing somatic mutation and recombination test (SMART) with standard and high-bioactivation crosses of flies. Panax ginseng was not genotoxic at the concentrations tested, whereas DOX-induced genotoxicity in marker-heterozygous flies resulted mainly from mitotic recombination. At low concentrations, P. ginseng had antirecombinogenic activity that was independent of the concentration of extract used. Recombination events may promote cancer, but little is known about the ability of P. ginseng to inhibit such recombination or modulate DNA repair mechanisms.


Subject(s)
Animals , Doxorubicin/toxicity , Drosophila melanogaster/genetics , Panax , Drosophila melanogaster , Phytotherapy , Plants, Medicinal , Wings, Animal
3.
Genet. mol. biol ; 31(3): 751-758, 2008. graf, tab
Article in English | LILACS | ID: lil-490065

ABSTRACT

A Mandevilla velutina crude extract was investigated using the mouse micronucleus test (MNT) and the Drosophila melanogaster somatic mutation and recombination test (SMART) using standard (ST) and high bioactivation (HB) crosses. The MNT used 10 mg, 20 mg or 40 mg per 100 g of body weight (bw) of extract with and without 0.2 mg per 100 g bw peritoneal cyclophosphamide. There was no genotoxicity in the negative control or extract only groups and, compared to the cyclophosphamide control, there was a significant reduction in micronucleated polychromatic erythrocytes in all the groups given extract plus cyclophosphamide. For SMART larvae were fed 5 or 10 mg mL-1 of extract for seven days with and without 0.89 mg mL-1 of urethane given on day seven. The ST and HB flies showed no significant differences in spots between the negative control and the extract only groups. The number of urethane-induced spots was reduced by the highest concentration of extract for the ST flies and by both concentrations of extract for the HB flies. The results suggest that M. velutina extract is not genotoxic but is antigenotoxic.

SELECTION OF CITATIONS
SEARCH DETAIL