Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Korean Journal of Aerospace and Environmental Medicine ; : 171-175, 2002.
Article in Korean | WPRIM | ID: wpr-184259

ABSTRACT

BACKGROUND: Low back pain (LBP) is known to be the significant reason for absenteeism and can develop long-term disability. So the airline authorities have made an effort to reduce the incidence of LBP by applying their physical standards. As a LBP Prevention Program, Airline A has provided health education, counseling and physical examinations. The purpose of this study is to analyze the relationship between LBP and physical characteristics, age and work duration, and this result will provide basic information for improving the LBP Prevention Program. METHOD: The subjects were the 585 flight attendants who had undergone regular physical check-ups with Airline A Medical Center from October 2000 to September 2001. We reviewed their absence records and physical characteristics, age and work duration. These data were analyzed statistically by the t-test and Lositic regression. RESULT: The LBP history group accounted for 18% of the study group. The male LBP history group had the more thin waist than the no history group. There were no differences (P<0.05) between LBP and other male and female physical characteristics. The age and work duration of male LBP history group was lower than the no history group (P<0.05). But the female comparison revealed that only the work experience in the LBP history group was lower than the No history group (P<0.05). Waist, age, work duration was analyzed statistically by logistic regression. Only female's work experience was significant. The fewer work experience was the more LBP. CONCLUSION: The results of this study suggest LBP is associated with work experience rather than physical characteristics. This is the first step toward improving a LBP Prevention Program for the cabin crew. It will be useful to conduct another review to assess various other reasons, such as psychosocial job factors, duration of work disability and muscle strength, related to LBP.


Subject(s)
Female , Humans , Male , Absenteeism , Counseling , Health Education , Incidence , Logistic Models , Low Back Pain , Muscle Strength , Physical Examination
2.
Korean Journal of Occupational and Environmental Medicine ; : 534-547, 1998.
Article in Korean | WPRIM | ID: wpr-126523

ABSTRACT

Blood and urine samples were taken from 447 welders exposed to manganese containing welding fumes and 127 office workers not exposed to welding fumes as a control. The air samples were analyzed by flame atomic absorption spectrophotometer (Varian 30A, Australia), and blood and urine samples were analyzed by flameless atomic absorption spectrophotometer(Z-8100, Hibachi, Japan). Data were evaluated in accordance with type of industry, smoking habits, and work duration. The results obtained were as follows: 1. The limit of detection(LOD) levels of manganese in blood and urine were 0.11 microgram/100ml of and 0.14 microgram/l, respectively. Our results of manganese concentration were shown within +/-2 standard deviation which was the upper and lower warning limit (UWL or LWL) on quality control chart. 2. The airborne concentrations of manganese in welding workplaces were 0.067 mg/m3 showing differences by type of industry ; 0.017 mg/m3 in automobile assembly and manufacturing industries, 0.084 mg/m3 in steel heavy industries and 0.180 mg/m3 in shipyards. 3. The blood manganese concentrations showed differences by type of industry showing the highest values of 1.70 microgram/100m1 in shipyards, 1.24 microgram/100m1 in automobile assembly and manufacturing industries and 1.11 microgram/100ml in steel heavy industries. Urinary manganese concentration corrected by urinary creatinine concentrations was 0.34 microgram/g creatinine in automobile assembly and manufacturing industries, 0.43 microgram/g creatinine in steel heavy industries and 0.48 microgram/g creatinine in shipyards. There were no difference urinary manganese concentrations by type of industry. 4. The overall blood manganese concentration was 1.26 microgram/100ml, and urinary manganese concentration was 0.35 microgram/g creatinine in welders. In contrast to these values, blood and urinary manganese concentrations were lower in control group showing 0.73 microgram/100m1, and 0.28 microgram/g creatinine, respectively. 5. Smoking habits did not seem to affect on blood and urinary manganese concentrations both in welders and office workers. 6. Blood manganese concentrations were significantly higher in welder who had worked longer than 10 years than in welder who had worked less than 10 years. 7. The blood manganese concentrations were significantly correlated to airborne manganese concentrations(r=0.318, n=64), work duration(r=0.425, n=538), and cumulative exposure indices(CEI) (r=0.354, n=64).


Subject(s)
Absorption , Automobiles , Creatinine , Manganese , Metallurgy , Quality Control , Smoke , Smoking , Steel , Welding
3.
Korean Journal of Preventive Medicine ; : 747-764, 1996.
Article in Korean | WPRIM | ID: wpr-116997

ABSTRACT

This study intended to obtain an useful information for health management of lead exposed measuring the lead exposure indices and workers and determine biological monitoring interval in early period of exposure by work duration in all male workers (n=433 persons) exposed less than 1 year in 6 storage battery industries and in 49 males who are not exposed to lead as control. The examined variables were blood lead concentration(PBB), Zinc-protoporphyrin concentration(ZPP), Hemoglobin(HB) and personal history; also measured lead concentration in air(PBA) in the workplace. According to the geometric mean of lead concentration in the air, the factories were grouped into three categories: A; When it is below 0.05mg/m3, B; When it is between 0.05 and 0.10mg/m3, and C; When it is above 0.10mg/m3. The results obtained were as follows: 1. The means of blood lead concentration(PBB), ZPP concentration and hemoglobin(HB) in all male workers exposed to lead less than 1 year in storage battery industries were 29.5+/-12.4 microgram/100ml, 52.9+/-30.0 microgram/100ml and 15.2+/-1.1 gm/100ml. 2. The means of blood lead concentration(PBB), ZPP concentration and hemoglobin(HB) in control group were 5.8+/-1.6 microgram/100ml, 30.8+/-12.7 microgram/100ml and 15.7+/-1.6 microgram/100ml, being much lower than that of study group exposed to lead. 3. The means of blood lead concentration and Zpp concentration among group A were 21.9+/-7.6 microgram/100ml, 41.4+/-12.6 microgram/100ml; those of group B were 29.8+/-11.6 microgram/100ml, 52.6+/-27.9 microgram/100ml; those of group C were 37.2+/-13.5 microgram/100ml, 66.3+/-40.7 microgram/100ml. Significant differences were found among three factory group(P<0.01) that was classified by the geometric mean of lead concentration in the air, group A being the lowest. 4. The mean of blood lead concentration of workers who have different work duration(month) was as follows; when the work duration was 1-2 month, it was 24.1+/-12.4 microgram/100ml,; When the work duration was 3-4 month, it was 29.2+/-13.4 microgram/100ml; and it was 28.9+/-34.5 microgram/100ml for the workers who had longer work duration than other. Significant differences were found among work duration group(P<0.05). 5. The mean of ZPP concentration of workers who have different work duration(month) was as follows; When the work duration was 1 2 month, it was 40.6 18.0 g/100ml, When the work duration was 3-4 month, it was 53.4+/-38.4 microgram/100ml; and it was 51.5+/-60.4 microgram/100ml for the workers who had longer work duration than other. Significant differences were found among work duration group(P<0.05). 6. Among total workers(433 person), 18.2% had PBB concentration higher than 40 microgram/100ml and 7.1% had ZPP concentration higher than 100 microgram/100ml; In workers of factory group A, those were 0.9% and 0.0%; In workers of factory group B, those were 17.1% and 6.9%; In workers of factory group C, those were 39.4% and 15.4%. 7. The proportions of total workers(433 person) with blood lead concentration lower than 25 microgram/100ml and ZPP concentration lower than 50 microgram/100ml were 39.7% and 61.9%, respectively; In workers of factory group A, those were 65.5% and 82.3%; In workers of factory group B, those were 36.1% and 60.2%; In workers of factory group C, those were 19.2% and 43.3%. 8. Blood lead concentration (r=0.177, P<0.01), ZPP concentration (r=0.135, P<0.01), log ZPP (r=0.170, P<0.01) and hemoglobin (r=0.096, P<0.05) showed statistically significant correlation with work duration (month). ZPP concentration (r=0.612, P<0.01) and log ZPP(r=0.614, P<0.01) showed statistically significant correlation with blood lead concentration. 9. The slopes of simple linear regression between work duration(month, independent variable) and blood lead concentration(dependent variable) in workplace with low air concentration of lead was less steeper than that of poor working condition with high geometric mean air concentration of lead. The study result indicates that new employees should be provided with biological monitoring including blood lead concentration test and education about personal hygiene and work place management within 3~4 month.


Subject(s)
Humans , Male , Education , Environmental Monitoring , Hygiene , Linear Models , Workplace
SELECTION OF CITATIONS
SEARCH DETAIL