Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Journal of Zhejiang University. Science. B ; (12): 214-222, 2021.
Article in English | WPRIM | ID: wpr-880722

ABSTRACT

OBJECTIVES@#To coat a zirconia surface with silica-zirconia using a dip-coating technique and evaluate its effect on resin-zirconia shear bond strength (SBS).@*METHODS@#A silica-zirconia suspension was prepared and used to coat a zirconia surface using a dip-coating technique. One hundred and eighty-nine zirconia disks were divided into three groups according to their different surface treatments (polishing, sandblasting, and silica-zirconia coating). Scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) were used to analyze the differently treated zirconia surfaces. Different primer treatments (Monobond N, Z-PRIME Plus, and no primer) were also applied to the zirconia surfaces. Subsequently, 180 composite resin cylinders (Filtek Z350) were cemented onto the zirconia disks with resin cement (RelyX Ultimate). The SBS was measured after water storage for 24 h or 6 months. The data were analyzed by two-way analysis of variance (ANOVA).@*RESULTS@#SEM and EDX showed that the silica-zirconia coating produced a porous layer with additional Si, and XRD showed that only tetragonal zirconia was on the silica-zirconia-coating surface. Compared with the control group, the resin-zirconia SBSs of the sandblasting group and silica-zirconia-coating group were significantly increased (@*CONCLUSIONS@#Dip-coating with silica-zirconia might be a feasible way to improve resin-zirconia bonding.

2.
Chinese Journal of Stomatology ; (12): 264-270, 2018.
Article in Chinese | WPRIM | ID: wpr-809893

ABSTRACT

Objective@#To investigate the osseointegration of a novel coating-plasma-sprayed zirconia in dental implant.@*Methods@#Zirconia coating on non-thread titanium implant was prepared using plasma spraying, the implant surface morphology, surface roughness and wettability were measured. In vivo, zirconia coated implants were inserted in rabbit tibia and animals were respectively sacrificed at 2, 4, 8 and 12 weeks after implantation. The bond strength between implant and bone was measured by push-out test. The osseointegration was observed by scanning electron microscopy (SEM), micro CT and histological analyses. Quantified parameters including removal torque, and bone-implant contact (BIC) percentage were calculated.@*Results@#The surface roughness (1.6 µm) and wettability (54.6°) of zirconia coated implant was more suitable than those of titanium implant (0.6 µm and 74.4°) for osseointegration. At 12 weeks, the push-out value of zirconia coated implant and titanium implant were (64.9±3.0) and (50.4±2.9) N, and BIC value of these two groups were (54.7±3.6)% and (41.5±3.6)%. All these differences had statistical significance.@*Conclusions@#The surface characters of zirconia coated implant were more suitable for osseointegration and present better osseointegration than smooth titanium implant in vivo, especially at early stage.

SELECTION OF CITATIONS
SEARCH DETAIL