Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
The Journal of Korean Academy of Prosthodontics ; : 312-316, 2014.
Article in Korean | WPRIM | ID: wpr-201570

ABSTRACT

PURPOSE: The aim of this study was to compare the fracture toughness of currently available resin cements for zirconia restorations and evaluate the effect of water storage on fracture toughness of those resin cements. MATERIALS AND METHODS: Single-edge notched specimens (3 mm x 6 mm x 25 mm) were prepared from three currently available dual cure resin cements for zirconia restorations (Panavia F 2.0, Clearfil SA luting and Zirconite). Each resin cement was divided into four groups: immersed in distilled water at 37degrees C for 1 (Control group), 30, 90, or 180 days (n=5). Specimens were loaded in three point bending at a cross-head speed of 0.1 mm/s. The maximum load at specimen failure was recorded and the fracture toughness (K(IC)) was calculated. Data were analyzed using one-way ANOVA and multiple comparison Scheffe test (alpha=.05). RESULTS: In control group, the mean KIC was 3.41 +/- 0.64 MN.m(-1.5) for Panavia F, 2.0, 3.07 +/- 0.41 MN.m(-1.5) for Zirconite, 2.58 +/- 0.30 MN.m(-1.5) for Clearfil SA luting respectively, but statistical analysis revealed no significant difference between them. Although a gradual decrease of K(IC) in Panavia F 2.0 and gradual increases of KIC in Clearfil SA luting and Zirconite were observed with storage time, there were no significant differences between immersion time for each cement. CONCLUSION: The resin cements for zirconia restorations exhibit much higher K(IC) values than conventional resin cements. The fracture toughness of resin cement for zirconia restoration would not be affected by water storage.


Subject(s)
Immersion , Resin Cements , Resins, Synthetic , Water
SELECTION OF CITATIONS
SEARCH DETAIL