Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Clinics ; 68(3): 385-389, 2013. ilus, tab
Article in English | LILACS | ID: lil-671431

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. METHOD: Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group). The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. RESULTS: Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. CONCLUSION: Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.


Subject(s)
Animals , Female , Rats , DNA Damage , Obesity/genetics , Sleep Deprivation/genetics , Age Factors , Brain/physiopathology , Comet Assay , Liver/physiopathology , Obesity/physiopathology , Random Allocation , Rats, Zucker , Sleep Deprivation/complications , Sleep Deprivation/physiopathology , Time Factors
2.
Rev. bras. educ. fís. esp ; 25(4): 593-605, out.-dez. 2011. ilus, tab
Article in Portuguese | LILACS | ID: lil-611283

ABSTRACT

A obesidade é uma patologia diretamente relacionada com o desenvolvimento de doenças cardiovasculares. Por outro lado, o treinamento físico aeróbio atenua o desenvolvimento da obesidade e promove benefícios cardíacos em obesos. Dessa forma, nosso objetivo foi investigar se a obesidade altera a função cardíaca e se sua associação com o treinamento físico aeróbio promove melhora na função cardíaca em ratos Zucker obesos. Os ratos Zucker foram divididos da seguinte forma: grupo magro (GM), grupo obeso (GO), grupo magro treinado (GMTR) e grupo obeso treinado (GOTR). O protocolo de treinamento aeróbio de natação foi realizado por um período de 10 semanas com cinco sessões semanais de 60 minutos de duração. A frequência cardíaca de repouso, a pressão arterial sistólica, a hipertrofia e função cardíaca foram avaliadas no final do período de treinamento físico. Ambos os grupos treinados apresentaram uma queda de 12 por cento da frequência cardíaca de repouso, quando comparado com seus respectivos controles. Ainda, nossos resultados demonstraram que o treinamento aeróbio reduziu o aumento da massa cardíaca em 13 por cento e melhorou a função diastólica na obesidade em 43 por cento. Em conclusão, nossos dados demonstraram que o treinamento físico aeróbio reverteu os prejuízos cardíacos causados pela obesidade.


Obesity is profoundly involved in cardiovascular diseases. On the other hand, aerobic exercise training (EXT) attenuates obesity and promotes cardiac benefits in obese individuals. Therefore, the aim of this study was to investigate if obesity alters the cardiac function and whether its association with exercise training can improve cardiac function in an obese Zucker rat strain. The rats were divided in the following groups: Lean Zucker rats (LZR); lean Zucker rats plus exercise training (LZR+EXT); obese Zucker rat (OZR) and obese Zucker rat plus exercise training (OZR+EXT). EXT consisted of 10 weeks swimming sessions of 60 min, 5 days/week. At the end of the training protocol we evaluated heart rate (HR), systolic blood pressure (SBP), cardiac hypertrophy (CH) and function. The trained groups LZR+EXT and OZR+EXT showed a 12 percent lower resting HR when compared with theirs respective controls. In addition, our results showed that exercise training reduced the cardiac mass by 13 percent and improved the diastolic function by 43 percent in the obese trained group when compared with the obese untrained. In conclusion, aerobic exercise training reverts the cardiac injuries in obese Zucker rats.


Subject(s)
Rats , Heart Diseases , Heart Rate , Physical Conditioning, Animal , Rats, Zucker
SELECTION OF CITATIONS
SEARCH DETAIL