Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Biomedical Engineering ; (6): 486-492, 2019.
Article in Chinese | WPRIM | ID: wpr-774181

ABSTRACT

Acoustic properties of biological tissues usually vary inhomogeneously in space. Tissues with different chemical composition often have different acoustic properties. The assumption of acoustic homogeneity may lead to blurred details, misalignment of targets and artifacts in the reconstructed photoacoustic tomography (PAT) images. This paper summarizes the main solutions to PAT imaging of acoustically heterogeneous tissues, including the variable sound speed and acoustic attenuation. The advantages and limits of the methods are discussed and the possible future development is prospected.


Subject(s)
Humans , Acoustics , Artifacts , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography
2.
Chinese Medical Equipment Journal ; (6): 46-51,61, 2018.
Article in Chinese | WPRIM | ID: wpr-699940

ABSTRACT

Objective To develop a new algorithm to reconstruct the distribution of acoustic sources of magnetoacoustic tomography with magnetic induction(MAT-MI)in the acoustic inhomogeneous media,which is developed on the basis of generalized finite element method (GFEM) and modified time inversion algorithm. Methods The acoustic and acoustic coupling theory and the basic equations of acoustics were used to study the forward and inverse problems of the acoustic inhomogeneous concentric sphere magneticacoustic coupling model. The solution of acoustic non-uniform media wave equation based on GFEM was proposed.The method solved the problem of acoustically inhomogeneous media sound source reconstruction and conductivity reconstruction.At the same time,the distribution of velocity was reconstructed by rotating the pairs of transducers and the time reversal algorithm. Results The proposed algorithm could accurately reconstruct the acoustic source distribution in acoustic inhomogeneous media,and could obtain the distribution of sound velocity during the reconstruction of sound source and recover the image well. Conclusion The proposed algorithm had its feasibility and effectiveness verified,and gains advantages in MAT-MI reconstruction of acoustic inhomogeneous media.

SELECTION OF CITATIONS
SEARCH DETAIL