Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Braz. j. biol ; 81(3): 684-691, July-Sept. 2021. graf
Article in English | LILACS | ID: biblio-1153408

ABSTRACT

Abstract Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, "bending roots." The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the "bending root," which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.


Resumo As plantas ajustam o crescimento da parte aérea para se adaptarem a fatores ambientais variáveis, como o aumento da radiação ultravioleta B (UVB). No entanto, as pessoas ignoram que as raízes das plantas também podem responder à luz UVB. Neste estudo, verificamos a morfologia das raízes enroladas de trigo sob radiação UVB, o que chamamos de "raízes dobradas". A região encaracolada é a zona de transição da raiz no nível celular. Depois de exposição à radiação UVB aprimorada por 2 dias (10,08 KJ/m2/d), o tamanho das células diminuiu, e os filamentos de actina se reuniram. Também constatamos que a produção de H2O2 aumentou e que o conteúdo do ácido indol-3-acético (IAA) aumentou notavelmente. O experimento farmacológico revelou que os filamentos de actina se reuniram e polimerizaram em feixes nas células da raiz de trigo após irrigação com H2O2 e IAA. Esses resultados indicam que os filamentos de actina alteraram sua distribuição e formaram a "raiz dobrada", relacionada à produção de H2O2 e ao aumento do IAA. No geral, os filamentos de actina nas células da raiz de trigo podem ser um alvo subcelular da radiação UVB, e sua interrupção determina a morfologia da raiz.


Subject(s)
Triticum , Hydrogen Peroxide , Ultraviolet Rays , Actin Cytoskeleton , Plant Roots
2.
Biol. Res ; 53: 54-54, 2020. ilus, graf
Article in English | LILACS | ID: biblio-1505780

ABSTRACT

BACKGROUND: UV-B signaling in plants is mediated by UVR8, which interacts with transcriptional factors to induce root morphogenesis. However, research on the downstream molecules of UVR8 signaling in roots is still scarce. As a wide range of functional cytoskeletons, how actin filaments respond to UV-B-induced root morphogenesis has not been reported. The aim of this study was to investigate the effect of actin filaments on root morphogenesis under UV-B and hydrogen peroxide exposure in Arabidopsis. RESULTS: A Lifeact-Venus fusion protein was used to stain actin filaments in Arabidopsis. The results showed that UV-B inhibited hypocotyl and root elongation and caused an increase in H2O2 content only in the root but not in the hypocotyl. Additionally, the actin filaments in hypocotyls diffused under UV-B exposure but were gathered in a bundle under the control conditions in either Lifeact-Venus or uvr8 plants. Exogenous H2O2 inhibited root elongation in a dose-dependent manner. The actin filaments changed their distribution from filamentous to punctate in the root tips and mature regions at a lower concentration of H2O2 but aggregated into thick bundles with an abnormal orientation at H2O2 concentrations up to 2 mM. In the root elongation zone, the actin filament arrangement changed from lateral to longitudinal after exposure to H2O2. Actin filaments in the root tip and elongation zone were depolymerized into puncta under UV-B exposure, which showed the same tendency as the low-concentration treatments. The actin filaments were hardly filamentous in the maturation zone. The dynamics of actin filaments in the uvr8 group under UV-B exposure were close to those of the control group. CONCLUSIONS: The results indicate that UV-B inhibited Arabidopsis hypocotyl elongation by reorganizing actin filaments from bundles to a loose arrangement, which was not related to H2O2. UV-B disrupted the dynamics of actin filaments by changing the H2O2 level in Arabidopsis roots. All these results provide an experimental basis for investigating the interaction of UV-B signaling with the cytoskeleton.


Subject(s)
Ultraviolet Rays , Actin Cytoskeleton/physiology , Arabidopsis/growth & development , Plant Roots/growth & development , Hydrogen Peroxide/pharmacology , Chromosomal Proteins, Non-Histone , Arabidopsis/radiation effects , Arabidopsis Proteins
3.
Journal of Bacteriology and Virology ; : 69-80, 2019.
Article in English | WPRIM | ID: wpr-764233

ABSTRACT

The dynamics of the actin cytoskeleton plays a pivotal role in the process of cell division, the transportation of organelles, vesicle trafficking and cell movement. Human immunodeficiency virus type 1 (HIV-1) hijacks the actin dynamics network during the viral entry and migration of the pre-integration complex (PIC) into the nucleus. Actin dynamics linked to HIV-1 has emerged as a potent therapeutic target against HIV infection. Although some inhibitors have been intensely analyzed with regard to HIV-1 infection, their effects are sometimes disputed and the exact mechanisms for actin dynamics in HIV infection have not been well elucidated. In this study, the small molecules regulating HIV-1 infection from diverse inhibitors of the actin dynamic network were screened. Two compounds, including Chaetoglobosin A and CK-548, were observed to specifically bar the viral infection, while the cytochalasin family, 187-1, N-WASP inhibitor, Rho GTPase family inhibitors (EHop-016, CID44216842, and ML-141) and LIMK inhibitor (LIM domain kinase inhibitor) increased the viral infection without cytotoxicity within a range of ~ µM. However, previously known inhibitory compounds of HIV-1 infection, such as Latrunculin A, Jasplakinolide, Wiskostatin and Swinholide A, exhibited either an inhibitory effect on HIV-1 infection combined with severe cytotoxicity or showed no effects. Our data indicate that Chaetoglobosin A and CK-548 have considerable potential for development as new therapeutic drugs for the treatment of HIV infection. In addition, the newly identified roles of Cytochalasins and some inhibitors of Rho GTPase and LIMK may provide fundamental knowledge for understanding the complicated actin dynamic pathway when infected by HIV-1. Remarkably, the newly defined action modes of the inhibitors may be helpful in developing potent anti-HIV drugs that target the actin network, which are required for HIV infection.


Subject(s)
Humans , Actin Cytoskeleton , Actins , Anti-HIV Agents , Cell Division , Cell Movement , Cytochalasins , GTP Phosphohydrolases , HIV Infections , HIV-1 , Organelles , Phosphotransferases , Transportation
4.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1467474

ABSTRACT

Abstract Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, bending roots. The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the bending root, which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.


Resumo As plantas ajustam o crescimento da parte aérea para se adaptarem a fatores ambientais variáveis, como o aumento da radiação ultravioleta B (UVB). No entanto, as pessoas ignoram que as raízes das plantas também podem responder à luz UVB. Neste estudo, verificamos a morfologia das raízes enroladas de trigo sob radiação UVB, o que chamamos de raízes dobradas. A região encaracolada é a zona de transição da raiz no nível celular. Depois de exposição à radiação UVB aprimorada por 2 dias (10,08 KJ/m2/d), o tamanho das células diminuiu, e os filamentos de actina se reuniram. Também constatamos que a produção de H2O2 aumentou e que o conteúdo do ácido indol-3-acético (IAA) aumentou notavelmente. O experimento farmacológico revelou que os filamentos de actina se reuniram e polimerizaram em feixes nas células da raiz de trigo após irrigação com H2O2 e IAA. Esses resultados indicam que os filamentos de actina alteraram sua distribuição e formaram a raiz dobrada, relacionada à produção de H2O2 e ao aumento do IAA. No geral, os filamentos de actina nas células da raiz de trigo podem ser um alvo subcelular da radiação UVB, e sua interrupção determina a morfologia da raiz.

5.
Experimental & Molecular Medicine ; : e26-2013.
Article in English | WPRIM | ID: wpr-74489

ABSTRACT

GIPC1, GIPC2 and GIPC3 consist of GIPC homology 1 (GH1) domain, PDZ domain and GH2 domain. The regions around the GH1 and GH2 domains of GIPC1 are involved in dimerization and interaction with myosin VI (MYO6), respectively. The PDZ domain of GIPC1 is involved in interactions with transmembrane proteins [IGF1R, NTRK1, ADRB1, DRD2, TGFbetaR3 (transforming growth factorbeta receptor type III), SDC4, SEMA4C, LRP1, NRP1, GLUT1, integrin alpha5 and VANGL2], cytosolic signaling regulators (APPL1 and RGS19) and viral proteins (HBc and HPV-18 E6). GIPC1 is an adaptor protein with dimerizing ability that loads PDZ ligands as cargoes for MYO6-dependent endosomal trafficking. GIPC1 is required for cell-surface expression of IGF1R and TGFbetaR3. GIPC1 is also required for integrin recycling during cell migration, angiogenesis and cytokinesis. On early endosomes, GIPC1 assembles receptor tyrosine kinases (RTKs) and APPL1 for activation of PI3K-AKT signaling, and G protein-coupled receptors (GPCRs) and RGS19 for attenuation of inhibitory Galpha signaling. GIPC1 upregulation in breast, ovarian and pancreatic cancers promotes tumor proliferation and invasion, whereas GIPC1 downregulation in cervical cancer with human papillomavirus type 18 infection leads to resistance to cytostatic transforming growth factorbeta signaling. GIPC2 is downregulated in acute lymphocytic leukemia owing to epigenetic silencing, while Gipc2 is upregulated in estrogen-induced mammary tumors. Somatic mutations of GIPC2 occur in malignant melanoma, and colorectal and ovarian cancers. Germ-line mutations of the GIPC3 or MYO6 gene cause nonsyndromic hearing loss. As GIPC proteins are involved in trafficking, signaling and recycling of RTKs, GPCRs, integrins and other transmembrane proteins, dysregulation of GIPCs results in human pathologies, such as cancer and hereditary deafness.


Subject(s)
Humans , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Sequence , Evolution, Molecular , Molecular Sequence Data , Multigene Family , Neoplasms/genetics , Protein Binding , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL