Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Chinese Pharmacological Bulletin ; (12): 114-158, 2024.
Article in Chinese | WPRIM | ID: wpr-1013615

ABSTRACT

Aim To investigate the effect of benzyl iso-thiocyanate (BITC) on the proliferation of mouse U14 cervical cancer cells and to explore the mechanism of cytotoxicity based on transcriptomic data analysis. Methods The effect of BITC on U14 cell activity was detected by MTT, nuclear morphological changes were observed by Hochest 33258 and fluorescent inverted microscope, cell cycle and apoptosis were determined by flow cytometry, and the transcriptome database of U14 cells before and after BITC (20 μmol · L

2.
Acta Pharmaceutica Sinica B ; (6): 1148-1157, 2021.
Article in English | WPRIM | ID: wpr-881190

ABSTRACT

As one of the most lethal diseases, pancreatic cancer shows a dismal overall prognosis and high resistance to most treatment modalities. Furthermore, pancreatic cancer escapes early detection during the curable period because early symptoms rarely emerge and specific markers for this disease have not been found. Although combinations of new drugs, multimodal therapies, and adjuvants prolong survival, most patients still relapse after surgery and eventually die. Consequently, the search for more effective treatments for pancreatic cancer is highly relevant and justified. As a newly re-discovered mediator of gasotransmission, hydrogen sulfide (H

3.
Journal of Integrative Medicine ; (12): 221-228, 2019.
Article in English | WPRIM | ID: wpr-774263

ABSTRACT

OBJECTIVE@#Garden cress (Lepidium sativum L.) is an important herb in traditional medicine used to improve production of breast milk in women and semen in men. In the present research the authors evaluated its ability to destroy leukemic cancer (Jurkat E6-1) cells, using the alkaloid extract of this plant.@*METHODS@#Constituents of the alkaloid extract were analyzed by gas chromatography-mass spectrometry (GC-MS) and their cytotoxicity in leukemic cancer cells and healthy peripheral blood mononuclear cells (PBMCs) was assessed. Cell death via apoptosis was confirmed by DNA laddering, caspase-3 activity, annexin V-fluorescein isothiocyanate and mitochondrial toxicity assays. The specific course of gene activation in treated cells was determined through quantitative polymerase chain reaction (qPCR).@*RESULTS@#GC-MS analysis identified six alkaloids and proto-alkaloids, namely, benzyl isothiocyanate (1), 2-ethoxy-4H-3,1-benzoxazin-4-one (2), (4R)-2-(2-aminophenyl)-4-phenyloxazoline (3), 5-acetyl-1,2-dihydro-6-methyl-2-oxo-4-phenyl-3-pyridinecarbonitrile (4), benzo[b][1,8]-naphthyridin-5(10H)-one,2,4,7-trimethyl (5) and 1,4-diaminoanthraquinone (6), in the alkaloid extract of L. sativum. Of these, compound 1 was previously identified in the seeds of L. sativum. Exposure to the alkaloid extract caused death of Jurkat E6-1 cells, with median lethal concentration (LC) of 75.25 µg/mL. However, the alkaloid extract also showed a nontoxic and proliferative (1.6-fold) effect in healthy PBMCs. Further experiments performed with Jurkat cells at LC and sub-LC doses demonstrated DNA fragmentation, activation of caspase-3 and time-dependant phosphatidylserine translocation (apoptosis) from inner to outer cell membranes. Cell toxicity and assessment of adenosine triphosphate level, together with using qPCR to evaluate expression profile of major apoptosis genes, revealed that apoptosis may be induced by disruption in the mitochondrial outer membrane potential, through activation of extrinsic and intrinsic apoptosis pathways in Jurkat cells.@*CONCLUSION@#The ability of the alkaloid extract of L. sativum seeds to induce apoptosis indicates a potential pharmacological use in cancer chemotherapy. The separation of individual active compounds and further in-depth exploration of the molecular mechanism of apoptosis may lead to novel chemotherapeutic compounds in our future antineoplastic research.

4.
Braz. j. med. biol. res ; 52(4): e8409, 2019. graf
Article in English | LILACS | ID: biblio-1001514

ABSTRACT

Benzyl isothiocyanate (BITC) has been shown to inhibit invasion and induce apoptosis of various types of cancer. However, its role on human oral squamous cell carcinoma (OSCC) cells is still not well elucidated. In the present study, we investigated the effect of BITC on apoptosis and invasion of SCC9 cells, and its underlying mechanisms in vitro and in vivo. SCC9 cells were exposed to BITC (5 and 25 μM) for 24 and 48 h. Cell growth, apoptosis, invasion, and migration were detected in vitro by MTT, FITC-conjugated annexin V/propidium iodide staining followed by flow cytometry, Matrigel-coated semi-permeable modified Boyden, and wound-healing assay. S100A4, PUMA, and MMP-9 expressions were detected to investigate its mechanisms. Xenotransplantation experiments were used to investigate the role of BITC on tumor growth and lung metastasis. BITC inhibited cell viability and induced cell apoptosis in a dose- and time-dependent manner through upregulation of PUMA signals. BITC inhibited cell invasion and migration by downregulation of S100A4 dependent MMP-9 signals. The ip administration of BITC reduced tumor growth but not lung metastasis of SCC9 cells subcutaneously implanted in nude mice. BITC treatment activated pro-apoptotic PUMA and inhibited S100A4-dependent MMP-9 signals, resulting in the inhibition of cell growth and invasion in cultured and xenografted SCC9 cells. Thereby, BITC is a potential therapeutic approach for OSCC.


Subject(s)
Animals , Female , Rabbits , Carcinoma, Squamous Cell/pathology , Cell Movement/drug effects , Apoptosis/drug effects , Isothiocyanates/pharmacology , Cell Proliferation/drug effects , S100 Calcium-Binding Protein A4/drug effects , Immunohistochemistry , Cell Survival/drug effects , Cell Line, Tumor , S100 Calcium-Binding Protein A4/metabolism , Mice, Nude
5.
Journal of Third Military Medical University ; (24)1983.
Article in Chinese | WPRIM | ID: wpr-565037

ABSTRACT

Objective To explore the apoptotic effect of benzyl isothiocyanate(BITC) on human leukemia cells and investigate its related molecular mechanism.Methods Cells(U937,Jurkat and HL60) were exposed to BITC at various concentrations(0,2,4,6 or 8 ?mol/L) for 6 h or 12 h,or at 8 ?mol/L for different time intervals.The apoptosis was measured using flow cytometry.The apoptotic-related proteins,such as Caspase-3,poly ADP-ribose polymerase(PARP),myeloid cell leukemia-1(Mcl-1) and so on,were determined using Western blot assay.Results BITC induced apoptosis in human leukemia cells in dose-and time-dependent manners.BITC at a dose over 4 ?mol/L began to induce an increased expression of Caspase-3 protein and decreased expression of PARP in U937 cells,and when the dose was 8 ?mol/L,the changes reached their summits respectively.The expression of anti-apoptotic protein Mcl-1 was decreased in U937 cell after exposure of BITC.Conclusion BITC induces apoptosis in human leukemia cells including U937,Jurkat and HL60,and downregulation of Mcl-1 may play an important role in BITC-induced apoptosis.

SELECTION OF CITATIONS
SEARCH DETAIL