Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Article | IMSEAR | ID: sea-216027

ABSTRACT

Oliceridine an intravenous opioid approved in 2020 by the Food and Drug Administration (FDA) to treat moderate-to-severe pain. Oliceridin developed with a novel mechanism that is biased agonism toward G-protein-coupled receptors pathway. Being biased agonist, it does not activate beta arrestin pathway responsible for opioid-related adverse events (ORAE), especially respiratory depression. Because of the novel mechanism, oliceridine has paved a pathway to decrease ORAE. Oliceridine has received breakthrough status by FDA. However, FDA denied oliceridine approval and withdrew breakthrough status by 2019. FDA made this decision because of the inadequacy of the safety data. Abuse potential and QT prolongation studies are conducted as per FDA recommendation in the year 2019; oliceridine was approved for moderate to severe pain in adults. This review will briefly summarize the pharmacological properties and study results of oliceridine in the management of pain. Thorough literature search was done for the efficacy and safety of oliceridine, search was done in electronic database of PubMed and Cochrane from inception till June 2021. Oliceridine was found to be effective in acute severe pain with less OREA when compared to morphine. Oliceridine has many drawbacks than what is hypothesized earlier, but this approach has opened new options for patients suffering from severe pain. Long?term effect of oliceridine has to be monitored to assess the effects of biased agonism.

2.
The Korean Journal of Pain ; : 73-79, 2018.
Article in English | WPRIM | ID: wpr-742182

ABSTRACT

All drugs have both favorable therapeutic and untoward adverse effects. Conventional opioid analgesics possess both analgesia and adverse reactions, such as nausea, vomiting, and respiratory depression. The opioid ligand binds to µ opioid receptor and non-selectively activates two intracellular signaling pathways: the G protein pathway induce analgesia, while the β-arrestin pathway is responsible for the opioid-related adverse reactions. An ideal opioid should activate the G protein pathway while deactivating the β-arrestin pathway. Oliceridine (TRV130) has a novel characteristic mechanism on the action of the µ receptor G protein pathway selective (µ-GPS) modulation. Even though adverse reactions (ADRs) are significantly attenuated, while the analgesic effect is augmented, the some residual ADRs persist. Consequently, a G protein biased µ opioid ligand, oliceridine, improves the therapeutic index owing to increased analgesia with decreased adverse events. This review article provides a brief history, mechanism of action, pharmacokinetics, pharmacodynamics, and ADRs of oliceridine.


Subject(s)
Animals , Mice , Analgesia , Analgesics, Opioid , Bias , Drug-Related Side Effects and Adverse Reactions , GTP-Binding Proteins , Intracellular Signaling Peptides and Proteins , Ligands , Mice, Knockout , Nausea , Patient Safety , Pharmacokinetics , Receptors, Opioid , Receptors, Opioid, mu , Respiratory Insufficiency , Vomiting
3.
Actual. osteol ; 12(1): 11-20, 2016. ilus
Article in English | LILACS, UNISALUD, BINACIS | ID: biblio-1379682

ABSTRACT

Bisphosphonates (BPs) anti-fracture efficacy may be due in part to inhibition of osteocyte apoptosis. This effect requires opening of connexin (Cx) 43 hemichannels and phosphorylation of the extracellular signal regulated kinases (ERKs). However, unlike ERK activation by other stimuli, the Cx43/ERK pathway activated by BPs does not result in nuclear ERK accumulation. Instead, the anti-apoptotic effect of BPs depends on phosphorylation of cytoplasmic ERK targets and is abolished by forced nuclear retention of ERKs. We now report that ERKs and the scaffolding protein ß-arrestin co-immuno-precipitate with Cx43 in MLO-Y4 osteocytic cells and that the BP alendronate increases this association. Moreover, ERK2 fused to red fluorescent protein (ERK2-RFP) co-localizes with Cx43 fused to green fluorescent protein outside the nucleus in cells untreated or treated with alendronate. Alendronate does not induce ERK nuclear accumulation in cells transfected with wild type ß-arrestin (wtARR) or vector control, whereas it does in cells expressing a dominant negative ß-arrestin mutant (dnARR) consisting of the ß-arrestin-clathrin binding domain that competes with endogenous ß-arrestin for binding to clathrin. Alendronate activates ERKs in dnARRtransfected cells as effectively as in cells transfected with wtARR, demonstrating that dnARR only interferes with subcellular localization but not with activation of ERKs by BPs. Further, whereas alendronate inhibits apoptosis in cells expressing wtARR or vector control, it is ineffective in cells expressing dnARR. Thus, BPs induce the formation of a complex comprising Cx43, ß-arrestin, and clathrin, which directs ERKs outside the nucleus and is indispensable for osteocyte survival induced by BPs. (AU)


La efectividad de los bisfosfonatos (BPs) en la prevención de fracturas puede deberse en parte a la inhibición de la apoptosis de osteocitos. Este efecto depende de la apertura de hemicanales de conexina (Cx) 43 y la fosforilación de quinasas reguladas por señales extracelulares (ERKs). Sin embargo, a diferencia de la activación de ERKs debida a otros estímulos, la vía de señalización Cx43/ERK activada por BPs no conlleva la acumulación de ERKs en el núcleo. El efecto anti-apoptótico de los BPs depende de la fosforilación de blancos citoplasmáticos de ERKs y es inhibido cuando las quinasas son retenidas en el núcleo. En este estudio hemos demostrado que ERKs y la proteína "scaffolding" ß-arrestina co-inmunoprecipitan con Cx43 en células osteocíticas MLO-Y4 y que alendronato aumenta esta asociación. Más aún, ERK2 fusionada a la proteína roja fluorescente (ERK2-RFP) co-localiza con Cx43 fusionada con la proteína verde fluorescente fuera del núcleo en células tratadas con vehículo o alendronato. Alendronato no indujo la acumulación nuclear de ERK en células transfectadas con ß-arrestina nativa (wtARR) o con un vector control, pero si lo hizo en células que expresan una forma dominante negativa de ß-arrestina (dnARR), consistente en el dominio de interacción entre ß-arrestina y clatrina, y que compite con ß-arrestina endógena por la unión a clatrina. Alendronato activa ERKs con la misma eficiencia en células transfectadas con dnARR o wtARR, demostrando que dnARR sólo interfiere con la localización subcelular de ERKs, pero no con su activación inducida por los BPs. Más aún, mientras alendronato inhibe apoptosis en células que expresan wtARR o vector control, es inefectivo en células que expresan dnARR. En conclusión, los BPs inducen la formación de un complejo que incluye Cx43, ß-arrestina y clatrina, el cual retiene ERKs fuera del núcleo y es indispensable para la sobrevida de los osteocitos inducida por estas drogas. (AU)


Subject(s)
Osteocytes/cytology , Cell Nucleus/enzymology , Apoptosis/drug effects , Connexin 43/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Diphosphonates/pharmacology , beta-Arrestins/metabolism , Osteocytes/drug effects , Osteocytes/metabolism , Bone and Bones/cytology , Cell Survival/drug effects
4.
Biomolecules & Therapeutics ; : 539-548, 2015.
Article in English | WPRIM | ID: wpr-185230

ABSTRACT

Prostaglandin E2 (PGE2), a major product of cyclooxygenase, binds to four different prostaglandin E2 receptors (EP1, EP2, EP3, and EP4) which are G-protein coupled transmembrane receptors (GPCRs). Although GPCRs including EP receptors have been shown to be associated with their specific G proteins, recent evidences suggest that GPCRs can regulate MAPK signaling via non-G protein coupled pathways including Src. EP2 is differentially expressed in various tissues and the expression of EP2 is induced by extracellular stimuli. We hypothesized that an increased level of EP2 expression may affect MAPK signaling. The overexpression of EP2 in HEK 293 cells resulted in significant increase in intracellular cAMP levels response to treatment with butaprost, a specific EP2 agonist, while overexpression of EP2 alone did not increase intracellular cAMP levels. However, EP2 overexpression in the absence of PGE2 induced an increase in the level of p38 phosphorylation as well as the kinase activity of p38, suggesting that up-regulation of EP2 may promote p38 activation via non-G protein coupled pathway. Inhibition of Src completely blocked EP2-induced p38 phosphorylation and overexpression of Src increased the level of p38 phosphorylation, indicating that Src is upstream kinase for EP2-induced p38 phosphorylation. EP2 overexpression also increased the Src activity and EP2 protein was co-immunoprecipitated with Src. Furthermore, sequential co-immunoprecipitation studies showed that EP2, Src, and beta-arrestin can form a complex. Our study found a novel pathway in which EP2 is associated with Src, regulating p38 pathway.


Subject(s)
Dinoprostone , GTP-Binding Proteins , HEK293 Cells , Immunoprecipitation , Phosphorylation , Phosphotransferases , Prostaglandin-Endoperoxide Synthases , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL