Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.448
Filter
1.
Chinese journal of integrative medicine ; (12): 213-221, 2024.
Article in English | WPRIM | ID: wpr-1010320

ABSTRACT

OBJECTIVE@#To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.@*METHODS@#HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.@*RESULTS@#HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).@*CONCLUSION@#HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , ErbB Receptors/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , RNA, Messenger/genetics , Cell Movement , Cell Line, Tumor , Chalcone/analogs & derivatives , Quinones
2.
Chinese Journal of Biotechnology ; (12): 150-162, 2024.
Article in Chinese | WPRIM | ID: wpr-1008086

ABSTRACT

Photosynthesis in plants directly affects the synthesis and accumulation of organic matter, which directly influences crop yield. RNA-binding proteins (RBPs) are involved in the regulation of a variety of physiological functions in plants, while the functions of RBPs in photosynthesis have not been clearly elucidated. To investigate the effect of a glycine-rich RNA-binding protein (SlRBP1) in tomato on plant photosynthesis, a stably inherited SlRBP1 silenced plant in Alisa Craig was obtained by plant tissue culture using artificial small RNA interference. It turns out that the size of the tomato fruit was reduced and leaves significantly turned yellow. Chlorophyll(Chl) content measurement, Chl fluorescence imaging and chloroplast transmission electron microscopy revealed that the chloroplast morphology and structure of the leaves of tomato amiR-SlRBP1 silenced plants were disrupted, and the chlorophyll content was significantly reduced. Measurement of photosynthesis rate of wild-type and amiR-SlRBP1 silenced plants in the same period demonstrated that the photosynthetic rate of these plants was significantly reduced, and analysis of RNA-seq data indicated that silencing of SlRBP1 significantly reduced the expression of photosynthesis-related genes, such as PsaE, PsaL, and PsbY, and affected the yield of tomato fruits through photosynthesis.


Subject(s)
RNA , Solanum lycopersicum/genetics , Photosynthesis/genetics , Chlorophyll , RNA-Binding Proteins/genetics
3.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 76-84, 2024.
Article in Chinese | WPRIM | ID: wpr-1007277

ABSTRACT

ObjectiveTo investigate the effect of Dendrobium officinale polysaccharide (DOP)on CCl4-induced hepatic fibrosis(HF)and its mechanism. MethodsA total of 56 male SD rats were randomly divided into seven groups: normal group(NG),model group(MG),colchicine group(CG, 0.1 mg/kg), Fuzheng Huayu group(FG, 0.45 g/kg),low-dose DOP group(LDG, 0.05 g/kg),middle-dose DOP group(MDG, 0.1 g/kg)and high-dose DOP group(HDG,0.2 g/kg),with 8 rats in each group. HF rat model was established by subcutaneous injection with 40% CCl4 olive oil mixture, every 3-day for 10 weeks. At the end of the sixth week, the drug groups were treated with colchicine, Fuzheng Huayu and DOP solution by gavage respectively, once a day for 4 weeks. NG and MG groups were similarly handled with an equal amount of 0.9 % normal saline. Liver histopathology was detected using hematoxylin-eosin (HE), Masson and Sirius red staining; blood biochemistry was tested for liver function and four indicators of HF; RT-qPCR and Western Blot were used to measure the expression of α-SMA, Col-I, E-cadherin, and ZEB1 genes and proteins in the liver tissues of rats, respectively. ResultsHE, Masson, and Sirius red staining showed that the liver tissue of MG rats had typical pathologic features of HF, and the degree of HF was alleviated in LDG, MDG, and HDG rats, respectively. Liver function test results showed that the serum AST, TBIL, and AKP levels were significantly lower in LDG, MDG, and HDG, compared with those of the MG (P < 0.05 or < 0.01). Meanwhile, ALT levels in serum deceased remarkably except in LDG (P < 0.05 or < 0.01). The four results of HF showed that the serum HA, LN, PC-Ⅲ, and COL-Ⅳ levels in LDG, MDG, and HDG rats were significantly decreased compared with those of the MG (P < 0.05 or < 0.01). The relative expressions of α-SMA, COL-I, and ZEB1 genes and proteins were significantly decreased in the liver tissues of LDG, MDG, and HDG (P < 0.05 or < 0.01), and the relative expression of E-cadherin gene and protein increased (P < 0.05 or < 0.01). In addition, the expressions of HA, α-SMA, COL-I, ZEB1 and E-cadherin were dependent on the dose of DOP. ConclusionDOP alleviated the degree of CCl4 induced HF in rats by inhibiting the epithelial-mesenchymal transition in liver tissue.

4.
Journal of Traditional Chinese Medicine ; (12): 128-133, 2024.
Article in Chinese | WPRIM | ID: wpr-1005359

ABSTRACT

The key pathogenesis of coronary heart disease (CHD) is spleen deficiency and phlegm stasis, and dysfunctional high-density lipoprotein (dys-HDL) may be the biological basis for the occurrence of CHD due to spleen deficiency and phlegm stasis. Considering the biological properties and effects of high-density lipoprotein (HDL), it is believed that the structure and components of HDL are abnormal in the state of spleen deficiency which led to dys-HDL; and dys-HDL contributes to the formation of atherosclerotic plaques through two major pathways, namely, mediating the dysfunction of endothelial cells and mediating the foaminess of macrophages and smooth muscle cells, thus triggering the development of CHD. It is also believed that dys-HDL is a microcosmic manifestation and a pathological product of spleen deficiency, and spleen deficiency makes foundation for the production of dys-HDL; dys-HDL is also an important biological basis for the phlegm-stasis interactions in CHD. The method of fortifying spleen, resolving phlegm, and dispelling stasis, is proposed as an important principle in the treatment of CHD by traditional Chinese medicine, which can achieve the therapeutic purpose by affecting the changes in the structure and components of dys-HDL, thus revealing the scientific connotation of this method, and providing ideas for the diagnosis and treatment of CHD by traditional Chinese medicine.

5.
Organ Transplantation ; (6): 46-54, 2024.
Article in Chinese | WPRIM | ID: wpr-1005233

ABSTRACT

Objective To investigate the role and mechanism of spliced X-box binding protein 1 (XBP1s) in the senescence of primary renal tubular epithelial cells induced by hypoxia/reoxygenation (H/R). Methods Primary renal tubular epithelial cells were divided into the normal control group (NC group), H/R group, empty adenovirus negative control group (Ad-shNC group), targeted silencing XBP1s adenovirus group (Ad-shXBP1s group), empty adenovirus+H/R treatment group (Ad-shNC+H/R group) and targeted silencing XBP1s adenovirus+H/R treatment group (Ad-shXBP1s +H/R group), respectively. The expression levels of XBP1s in the NC, H/R, Ad-shNC and Ad-shXBP1s groups were measured. The number of cells stained with β-galactosidase, the expression levels of cell aging markers including p53, p21 and γH2AX, and the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were determined in the Ad-shNC, Ad-shNC+H/R and Ad-shXBP1s+H/R groups. Chromatin immunoprecipitation was employed to verify Sirtuin 3 (Sirt3) of XBP1s transcription regulation, and the expression levels of Sirt3 and downstream SOD2 after down-regulation of XBP1s were detected. Mitochondrial reactive oxygen species (mtROS) were detected by flow cytometry. Results Compared with the NC group, the expression level of XBP1s was up-regulated in the H/R group. Compared with the Ad-shNC group, the expression level of XBP1s was down-regulated in the Ad-shXBP1s group (both P<0.001). Compared with the Ad-shNC group, the number of cells stained with β-galactosidase was increased, the expression levels of p53, p21 and γH2AX were up-regulated, the levels of ROS, MDA and mtROS were increased, the SOD activity was decreased, the expression level of Sirt3 was down-regulated, and the ratio of Ac-SOD2/SOD2 was increased in the Ad-shNC+H/R group. Compared with the Ad-shNC+H/R group, the number of cells stained with β-galactosidase was decreased, the expression levels of p53, p21 and γH2AX were down-regulated, the levels of ROS, MDA and mtROS were decreased, the SOD activity was increased, the expression level of Sirt3 was up-regulated and the ratio of Ac-SOD2/SOD2 was decreased in the Ad-shXBP1s+H/R group (all P<0.05). Conclusions Down-regulation of XBP1s may ameliorate the senescence of primary renal tubular epithelial cells induced by H/R, which probably plays a role through the Sirt3/SOD2/mtROS signaling pathway.

6.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 22-28, 2024.
Article in Chinese | WPRIM | ID: wpr-1003440

ABSTRACT

Objective@#To study the effect of low concentrations of sodium fluoride on the osteogenic/odontogenic differentiation of human dental pulp cells (hDPCs) in vitro.@*Methods@#This study was reviewed and approved by the Ethics Committee. hDPCs were cultured using a modified tissue explant technique in vitro. The effects of different concentrations of sodium fluoride on the proliferation of hDPCs were measured by methylthiazol tetrazolium (MTT) assay. Appropriate concentrations were added to the osteogenic/odontogenic differentiation induction medium, and the cells were induced in vitro. Alizarin red S staining was used to detect the osteoblastic/odontogenic differentiation ability of the cells, and the mRNA expression of the key differentiation factors was detected by RT-qPCR. Moreover, the expression of key molecules of endoplasmic reticulum stress (ERS) was detected by RT-qPCR and Western blot. The data were analyzed with the SPSS 18.0 software package.@*Results@#Low concentration of NaF (0.1 mmol/L) could stimulate cell proliferation in vitro, while a high concentration (5-10 mmol/L) could inhibit cell proliferation (P<0.05). According to the literature and the experimental data, 0.1 mmol/L NaF was selected as the following experimental concentration. The levels of alizarin red S staining were increased after NaF induction of mixed osteogenic/odontogenic differentiation in vitro. The mRNA expression levels of key molecules for osteogenic/odontogenic differentiation, dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP) and osteocalcin (OCN), were increased (P<0.05). The mRNA levels of ERS markers (splicing x-box binding protein-1 (sXBP1), glucose-regulated protein 78 (GRP78) and activating transcription Factor 4 (ATF4) were increased in NaF-treated cells. The protein expression levels of key ER stress molecules (phosphorylated RNA-activated protein kinase-like ER-resident kinase (p-PERK), phosphorylated eukaryotic initiation factor-2α (p-eIF2α) and ATF4) were higher in NaF-treated cells.@*Conclusion@#A low concentration of NaF promotes the osteogenic/odontogenic differentiation of hDPCs and increases the level of ER stress.

7.
Acta Anatomica Sinica ; (6): 25-31, 2024.
Article in Chinese | WPRIM | ID: wpr-1015158

ABSTRACT

Objective To analyse the analgesic effect and possible mechanism of panax notoginseng saponin (PNS) on mouse models of chronic inflammatory pain caused by complete Freund’s adjuvant (CFA). Methods A total of 48 male C57BL/ 6J mice were divided randomly into four groups: normal saline control group (Ctrl), CFA group (CFA), CFA + PNS group (CFA+PNS), CFA + dexamethasone (DEX) group (CFA+DEX). Von Frey filaments were used to detect mechanical pain in mice. Immunohistochemistry was used to detect the number and morphological changes of glial fibrillary acidic protein (GFAP) positive astrocytes. Western blotting was used to detect the expressions of GFAP, nucleotide-binding and oligomerization domain(NOD)-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, interleukin (IL)-1β, and IL-18 in mice’s spinal cord segments in each group. Results Compared with the Ctrl group, mice in the CFA group showed a significant decrease in mechanical pain thresholds at day 1, day 3, day 5, day 7, and day 14. Additionally, there was a significant decrease in NLRP3, ASC, Caspase-1, IL-1β and IL-18 in the spinal cord of the mice. PNS intervention could relieve mechanical pain and down-regulate the expressions of NLRP3, ASC, Caspase-1, IL-1β and IL-18 in the spinal cord of mice, with no significant difference compared with the CFA+DEX group. CFA group mice had significantly more GFAP positive cells in their posterior horns than Ctrl group mice, as measured by immunohistochemistry; PNS intervention decreased the number of GFAP positive cells in the posterior horn of the spinal cord in model mice;DEX had no effect on the number of GFAP positive cells in the dorsal horn of spinal cord. According to Western blotting results, GFAP expression in the spinal cord of the CFA group was significantly more than that of the Ctrl group; PNS intervention significantly reduced GFAP expression in the spinal cord of CFA group mice;DEX had no effect on the expression of GFAP in the posterior horn of spinal cord. Conclusion PNS has a good alleviating effect on inflammatory pain, and its mechanism may be related to inhibition of astrocyte activation and NLRP3 inflammasome activation.

8.
Acta Anatomica Sinica ; (6): 32-42, 2024.
Article in Chinese | WPRIM | ID: wpr-1015150

ABSTRACT

Objective To investigate the relieving effects of knockdown of long non-coding RNA(lncRNA)taurine up-regulated gene 1 (TUG1) on inhibiting nucleotide binding oligomerization domain like receptor protein 1 (NLRP1) inflammasome and the progression of Alzheimer’ s disease. Methods Wild-type (WT group, 10 mice) or amyloid precursor protein (APP) / presenilin-1 (PS1) transgenic mice (30 mice) with a genetic background of C57 / BL6 aged 9-10 weeks were used in this study. APP / PS1 transgenic mice were randomly divided into model group, model+lncRNA TUG1 short hairpin RNA (shRNA) group and model + shRNA non target (NT) group (n = 10) . Blood samples, cerebral cortex tissues, primary microglial cells and primary astrocytes were collected from mice 12 weeks of age on day 1 (3-month-old) and 32 weeks of age on day 1 (8-month-old), with 5 mice per group at each time point. Real-time PCR analysis was used to detect the expression levels of lncRNA TUG1 and macrophage migration inhibitory factor (MIF) mRNA in cerebral cortex tissues and primary microglial cells, and C1r and C1s mRNA levels in primary astrocytes of 3-month-old and 8-month-old mice in the above 4 groups, respectively. ELISA was used to determine the MIF in plasma samples of the above 4 groups of mice. Primary microglia and astrocytes from the cerebral cortex of 3-month-old and 8-month-old mice were co-cultured. CCK-8 method was used to determine the proliferation ability of the above cells. Western blotting was used to determine the expression levels of MIF, pro interleukin-1β (pro-IL-1β), apoptosis associated speck-like protein containing a caspase recrult domain(ASC), Caspase-1 (p20), Caspase-1 (full), NLRP1 and NLRP3 in cerebral cortex tissues of 3-month-old and 8-month-old mice. Immunofluorescent staining was used to determine amyloid beta(Aβ) in cerebral cortex of 8-month-old mice. Results At the age of 3-month-old and 8-month-old, compared with the WT group, the relative expression level of lncRNA TUG1 and MIF in cerebral cortex tissues and primary microglia of model group mice was significantly up-regulated, with primary microglial cells and astrocytes proliferation ability enhanced (P0. 05) . There was no significant difference between the model group and the model+shRNA NT group mice of all the above factors (P>0. 05) . Conclusion In APP / PS1 transgenic mice, up-regulation of lncRNA TUG1 and MIF are positively associated with the activation of NLRP1 inflammasome in mice cerebral cortex tissues and primary microglia. Knock-down of lncRNA TUG1 can ameliorate the progression of Alzheimer’ s disease.

9.
Chinese Journal of Biologicals ; (12): 280-286, 2024.
Article in Chinese | WPRIM | ID: wpr-1013389

ABSTRACT

@#Objective To compare the effects of different signal peptides on the secretion and expression of SARS-CoV-2S1,receptor binding domain(RBD) and RBD dimer proteins in Expisf9 insect cells.Methods The gene sequences of three proteins,SARS-CoV-2 S1(M1-E661),RBD(R319-P545) and RBD dimer(R319-K537 tandem),were selected and divided into 25 groups according to the different N-terminal signal peptide sequences(Endo,honeybee melittin(HBM),GP64,GP67,chitinase(Chi) and HIV-ENV) and C-terminal label sequences.25 recombinant baculoviruses were constructed by Bac-to-Bac system,and 25 groups of tertiary strain banks were prepared.B2 and C4 viruses were inoculated to logarithmic prestage cells(2.8 × 10~6 cells/mL) and logarithmic metaphase cells(1.2 × 10~7 cells/mL),respectively.The viruses of each group were cultured to 100 mL(500 mL shaker) for protein expression,and samples were taken for SDSPAGE electrophoresis,Western-blot and ELISA detection.Two groups with higher expression levels of S1,RBD and RBD dimer proteins were selected for repeated verification.Results When B2 and C4 were inoculated to high cell density,the secretion expression level showed no increase,while there were significant difference between 4 and 5 d after inoculation.The expression level of A7(Endo-S1-tag) was significantly lower than that of A9(HIV-ENV-S1-tag),the expression level of A4(Gp67-S1-tag) was the highest,and the secreted expression level of A1(Endo-Endo-Sl-tag) was significantly lower than that of A7(Endo-S1-tag).The secretion and expression of B6(HIV-ENV-RBD-tag) was signifi-cantly higher than that of B4(Gp67-RBD-tag) and other signal peptide groups,and C4(Gp67-RBD-dimer-tag) expression was significantly higher than that of C3(Gp64-RBD-dimer-tag).Two groups with high expression of each protein were selected separately for repeated verification(A4,A9;B4,B6;C3,C4) and the results showed that A4,B6 and C4 had the highest secretion expression levels.Conclusion The signal peptide for the highest secretion expression of S1 and RBD dimer proteins is the same,which is GP67 signal peptide,while the most suitable signal peptide for RBD protein is HIV-ENV,indicating that the N-terminal sequence can affect protein secretion,signal peptide sequence is universal to a certain extent,but is also related to the target protein sequence to be expressed.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 116-124, 2024.
Article in Chinese | WPRIM | ID: wpr-1013347

ABSTRACT

ObjectiveTo examine the inhibitory effects of berberine compounds, including columbamine, on acetylcholinesterase from the perspectives of drug-target binding affinity and kinetics and explore the blood-brain barrier (BBB) permeability of these compounds in different multi-component backgrounds. MethodThe median inhibitory concentration (IC50) of acetylcholinesterase by berberine compounds including columbamine was measured using the Ellman-modified spectrophotometric method. The binding kinetic parameters (Koff) of these compounds with acetylcholinesterase were determined using the enzyme activity recovery method. A qualitative analysis of the ability of these components to penetrate the BBB and arrive at the brain tissue in diverse multi-component backgrounds (including medicinal herbs and compound formulas) was conducted using ultra performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). ResultBerberine compounds, including columbamine, exhibited strong inhibition of acetylcholinesterase, with IC50 values in the nanomolar range. Moreover, they displayed better drug-target binding kinetics characteristics (with smaller Koff values) than the positive control of donepezil hydrochloride (P<0.01), indicating a longer inhibition duration of acetylcholinesterase. Berberine components such as columbamine could penetrate the BBB to arrive at brain tissue in the form of a monomer, as well as in the multi-component backgrounds of Coptis and Phellodendri Chinensis Cortex medicinal extracts and the compound formula Huanglian Jiedutang. ConclusionThese berberine compounds such as columbamine exhibit a strong inhibitory effect on acetylcholinesterase and can arrive at brain tissue in multi-component backgrounds. In the level of pharmacological substance, this supports the clinical efficacy of compound Huanglian Jiedutang in improving Alzheimer's disease, providing data support for elucidating the pharmacological basis of compound Huanglian Jiedutang.

11.
International Eye Science ; (12): 561-566, 2024.
Article in Chinese | WPRIM | ID: wpr-1012821

ABSTRACT

Age-related macular degeneration(ARMD)is a neurodegenerative disease associated with oxidative stress. It is characterized by progressive death of photoreceptors and retinal pigment epithelium(RPE), and is one of the leading causes of irreversible loss of central vision in patients over the age of 65 years old. MicroRNA(miRNA)is a class of regulatory short-chain non-coding RNA that can bind and inhibit multiple gene targets in the same biological pathway. This unique property makes microRNA an ideal target for exploring the pathogenesis, diagnosis and treatment of non-exudative ARMD. Previous studies have found that the pathogenesis of non-exudative ARMD involves age, genetics, environment, oxidative stress, lipid metabolism, autophagy and immunity. However, the exact mechanisms have not been fully clarified. As biomarkers of non-exudative ARMD, miRNA play a role in oxidative stress and lipid metabolism. This article summarizes the role of various miRNA in targeting Nrf2 and HIF-1α to inhibit hypoxia-related angiogenesis signaling, thereby affecting oxidative stress. Additionally, miRNA regulate lipid uptake and the expression of ABCA1 in RPE and macrophages, thereby influencing lipid metabolism. This deepens the understanding of the role of miRNA in oxidative stress and lipid metabolism in non-exudative ARMD, and provides directions for further improving the understanding of the pathogenesis and prevention of non-exudative ARMD.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 290-298, 2024.
Article in Chinese | WPRIM | ID: wpr-1012719

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease often characterized by cognitive impairment in clinical practice. The main pathogenesis includes β amyloid protein (Aβ) excessive deposition, neuroinflammatory response, Tau protein hyperphosphorylation, and other factors, and currently only a few chemical drugs have been approved for clinical treatment of AD. The mechanism of action is relatively single, so it is imperative to find new treatment strategies. Traditional Chinese medicine theory believes that the loss of nourishment in the brain and marrow, as well as the loss of vital energy, is the internal mechanisms underlying the occurrence and development of AD, which runs through the entire treatment process. The pathogenesis of AD is closely related to the inflammasome signaling pathway of nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3). Activating the NLRP3 signaling pathway increases neuroinflammatory response, intervenes in microglial polarization, and regulates Aβ sedimentation, cellular autophagy, brain homeostasis, etc. This article takes the NLRP3 signaling pathway as the starting point to sort out and summarize the upstream and downstream targets under the AD mechanism in the past five years, as well as the research on the NLRP3 signal pathway targets with the participation of the relevant traditional Chinese medicine compounds, such as Danggui Shaoyaosan, modified Shuyu Wan, Qingxin Kaiqiao prescription, Kaixin San, Jiedu Yizhi prescription, and modified Buwang San, traditional Chinese medicine monomer extracts, such as silibinin, Lycium barbarum polysaccharides, liquiritigenin, salidroside, baicalin, cinnamaldehyde, betaine, acacetin, and Hericium erinaceus, and acupuncture and moxibustion. It also reviews the latest achievements in the prevention and treatment of AD. This study provides ideas and directions for in-depth research on the prevention and treatment of cognitive dysfunction related diseases with traditional Chinese medicine.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 100-108, 2024.
Article in Chinese | WPRIM | ID: wpr-1012698

ABSTRACT

ObjectiveTo decipher the mechanism of Wenxiao powder in alleviating corticosterone-induced depression-like behaviors in mice. MethodMale ICR mice were randomized into normal, model, paroxetine (20 mg·kg-1), and low- and high-dose (3.27, 6.54 g·kg-1, respectively) Wenxiao powder groups. The mice in normal and model groups received equal volume of saline. Other groups except the normal group were injected with corticosterone subcutaneously 0.5 h after gavage to induce depression. Mice were tested for depression-like behaviors after drug administration. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the corticosterone content in the serum. Nissl staining was performed to observe the damage of hippocampal neurons. Immunofluorescence staining was employed to observe the expression of double cortin (DCX) in the dentate gyrus (DG) of the hippocampus. Western blot was employed to determine the expression of proteins in the brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB)/extracellular signal-regulated kinase (ERK)/cAMP-response element-binding protein (CREB) pathway in the hippocampus. ResultCompared with the normal group, the model group showed decreased sucrose preference rate, increased immobility time in the tail suspension test (P<0.01), and reduced residence time in the central area of the open field and the total movement distance (P<0.05, P<0.01). In addition, the modeling elevated the corticosterone level in the serum (P<0.01), decreased the volume and intensified the nuclear staining of hippocampal neurons in the DG area, reduced the expression of DCX in the DG area, and down-regulated the protein levels of BDNF, phosphorylated (p)-TrkB, p-ERK, and p-CREB in the hippocampus (P<0.05, P<0.01). Compared with the model group, low-dose Wenxiao powder improved the mouse behavivors in the sucrose preference, open field, and tail suspension tests (P<0.05, P<0.01), and high-dose Wenxiao powder improved the behaviors in the sucrose preference and open field tests (P<0.05, P<0.01). In addition, Wenxiao powder lowered the serum corticosterone level (P<0.01) and recovered the structure and morphology of neurons with obvious nuclei and presence of Nissl bodies in the DG area of the hippocampus. Moreover, Wenxiao powder at both doses promoted the expression of DCX in the DG area, and high-dose Wenxiao powder up-regulated the protein levels of BDNF, p-TrkB, p-ERK, and p-CREB in the hippocampus (P<0.05, P<0.01). ConclusionWenxiao powder can alleviate corticosterone-induced depression-like behaviors and promote neurogenesis in mice possibly by activating the BDNF/TrkB/ERK/CREB signaling pathway.

14.
Malaysian Journal of Medicine and Health Sciences ; : 161-167, 2024.
Article in English | WPRIM | ID: wpr-1012685

ABSTRACT

@#Introduction: Prediction and identification of miRNAs target genes are crucial for understanding the biology of miRNAs. Amidst reported long-coding RNA (lncRNA), the microRNA 195-497 cluster host gene (MIR497HG) regulation is mediated by multiple non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). MIR497HG has been implicated as a tumour suppressor in various cancers. However, the impact of MIR497HG and its derived miRNAs is largely unknown and still needs to be further explored. Employing an experimental approach is often challenging since some lncRNAs are difficult to identify and isolate by the current isolation technique. Thus, bioinformatic tools are introduced to aid these problems. This study sought to search and identify the miRNAs targeting the 3’untranslated region (3’UTR) of MIR497HG. Methods: Here, bioinformatic tools were adopted to identify a unique list of miRNAs that potentially target the 3’UTR of MIR497HG. Results: A total of 57 candidate miRNAs that target the 3’UTR of MIR497HG were extracted using the miRDB. Meanwhile, STarMir predicted 291 miRNAs that potentially target the 3’UTR of MIR497HG. A common list of 36 miRNAs was obtained using the Venny 2.1.0 and further narrowed down using the LogitProb score of StarMir. Finally, a total 4 miRNAs (hsa-miR-3182, hsa-miR-7156-5p, hsa-miR-452-3p and hsa-miR-2117) were identified. The mRNA target of identified miRNAs was identified by TargetScan. Finally, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of mRNA target was done using Enrichr. Conclusion: This finding could be useful in understanding the complex interaction between MIR497HG and its regulatory miRNA. In addition, a comparative analysis of computational miRNA-target predictions is provided in this study would potentially lay the foundations for miRNAs to be used for biomarkers in cancer research.

15.
Organ Transplantation ; (6): 220-228, 2024.
Article in Chinese | WPRIM | ID: wpr-1012492

ABSTRACT

Objective To evaluate the effect of spliced X-box binding protein 1 (XBP1s) on hypoxia/reoxygenation (H/R) injury of mouse renal tubular epithelial cells and unravel underlying mechanism. Methods Mouse renal tubular epithelial cells were divided into adenovirus negative control group (Ad-shNC group), targeted silencing XBP1s adenovirus group (Ad-shXBP1s group), Ad-shNC+H/R group and Ad-shXBP1s+H/R group. The apoptosis level, mitochondrial reactive oxygen activity, mitochondrial membrane potential and mitochondrial calcium ion level were detected in each group. Chromatin immunocoprecipitation followed by sequencing (ChIP-seq) was employed to analyze the binding sites of XBP1s in regulating the inositol 1,4,5-trisphosphate receptor (ITPR) family. The expression levels of XBP1s and ITPR family messenger RNA (mRNA) and protein were determined in each group. Results Compared with the Ad-shNC group, the apoptosis level was higher, mitochondrial reactive oxygen species level was increased, mitochondrial membrane potential was decreased and mitochondrial calcium ion level was elevated in the Ad-shNC+H/R group. Compared with the Ad-shNC+H/R group, the apoptosis level was lower, mitochondrial reactive oxygen species level was decreased, mitochondrial membrane potential was elevated, and mitochondrial calcium ion level was decreased in the Ad-shXBP1s+H/R group (all P<0.05). Compared with the Ad-shNC group, relative expression levels of XBP1s, ITPR1, ITPR2 and ITPR3 mRNAs and proteins were down-regulated in the Ad-shXBP1s group (all P<0.05). Compared with the Ad-shNC group, relative expression levels of XBP1s, ITPR1, ITPR2 and ITPR3 proteins were up-regulated in the Ad-shNC+H/R group. Compared with the Ad-shNC+H/R group, relative expression levels of XBP1s, ITPR1, ITPR2 and ITPR3 were down-regulated in the Ad-shXBP1s+H/R group (all P<0.05). ChIP-seq results showed that XBP1s could bind to the promoter and exon of ITPR1, the exon of ITPR2, and the exon of ITPR3. Conclusions XBP1s may affect mitochondria-associated endoplasmic reticulum membrane structure and function by directly regulating ITPR transcription and translation. Down-regulating XBP1s may inhibit ITPR expression and mitigate mitochondrial damage.

16.
Acta Pharmaceutica Sinica B ; (6): 292-303, 2024.
Article in English | WPRIM | ID: wpr-1011234

ABSTRACT

This study examines inhibiting galectin 1 (Gal1) as a treatment option for hepatocellular carcinoma (HCC). Gal1 has immunosuppressive and cancer-promoting roles. Our data showed that Gal1 was highly expressed in human and mouse HCC. The levels of Gal1 positively correlated with the stages of human HCC and negatively with survival. The roles of Gal1 in HCC were studied using overexpression (OE) or silencing using Igals1 siRNA delivered by AAV9. Prior to HCC initiation induced by RAS and AKT mutations, lgals1-OE and silencing had opposite impacts on tumor load. The treatment effect of lgals1 siRNA was further demonstrated by intersecting HCC at different time points when the tumor load had already reached 9% or even 42% of the body weight. Comparing spatial transcriptomic profiles of Gal1 silenced and OE HCC, inhibiting matrix formation and recognition of foreign antigen in CD45+ cell-enriched areas located at tumor-margin likely contributed to the anti-HCC effects of Gal1 silencing. Within the tumors, silencing Gal1 inhibited translational initiation, elongation, and termination. Furthermore, Gal1 silencing increased immune cells as well as expanded cytotoxic T cells within the tumor, and the anti-HCC effect of lgals1 siRNA was CD8-dependent. Overall, Gal1 silencing has a promising potential for HCC treatment.

17.
Protein & Cell ; (12): 52-68, 2024.
Article in English | WPRIM | ID: wpr-1010786

ABSTRACT

Here, we report a previously unrecognized syndromic neurodevelopmental disorder associated with biallelic loss-of-function variants in the RBM42 gene. The patient is a 2-year-old female with severe central nervous system (CNS) abnormalities, hypotonia, hearing loss, congenital heart defects, and dysmorphic facial features. Familial whole-exome sequencing (WES) reveals that the patient has two compound heterozygous variants, c.304C>T (p.R102*) and c.1312G>A (p.A438T), in the RBM42 gene which encodes an integral component of splicing complex in the RNA-binding motif protein family. The p.A438T variant is in the RRM domain which impairs RBM42 protein stability in vivo. Additionally, p.A438T disrupts the interaction of RBM42 with hnRNP K, which is the causative gene for Au-Kline syndrome with overlapping disease characteristics seen in the index patient. The human R102* or A438T mutant protein failed to fully rescue the growth defects of RBM42 ortholog knockout ΔFgRbp1 in Fusarium while it was rescued by the wild-type (WT) human RBM42. A mouse model carrying Rbm42 compound heterozygous variants, c.280C>T (p.Q94*) and c.1306_1308delinsACA (p.A436T), demonstrated gross fetal developmental defects and most of the double mutant animals died by E13.5. RNA-seq data confirmed that Rbm42 was involved in neurological and myocardial functions with an essential role in alternative splicing (AS). Overall, we present clinical, genetic, and functional data to demonstrate that defects in RBM42 constitute the underlying etiology of a new neurodevelopmental disease which links the dysregulation of global AS to abnormal embryonic development.


Subject(s)
Female , Animals , Mice , Humans , Child, Preschool , Intellectual Disability/genetics , Heart Defects, Congenital/genetics , Facies , Cleft Palate , Muscle Hypotonia
18.
Braz. j. otorhinolaryngol. (Impr.) ; 89(5): 101306, Sept.-Oct. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1520490

ABSTRACT

Abstract Objectives: Observational studies suggested that obesity may promote the development of allergic rhinitis. The aim of this study was to explore the association of obesity, lipids and adipokines with this allergic disease at the genetic level using Mendelian randomization strategies. Methods: Summary data for three obesity indicators (such as body mass index), eight lipid indicators (such as triglycerides) and six adipokines (such as interleukin-6 and adipocyte fatty acid-binding protein) were collected, and suitable instrumental variables were extracted from these summary data according to the three main assumptions of Mendelian randomization. Three Mendelian randomization methods (such as inverse variance weighted) were used to detect the casual effect of the above indicators on allergic rhinitis risk. Sensitivity analyses were performed to assess heterogeneity and horizontal pleiotropy. Results: After Bonferroni correction, the inverse variance weighted reported that elevated levels of interleukin-6 and adipocyte fatty acid-binding protein were nominally associated with the decreased risk of allergic rhinitis (OR = 0.870, 95% CI 0.765-0.990, p = 0.035; OR = 0.732, 95% CI 0.551-0.973, p = 0.032). The other Mendelian randomization methods supported these results. Obesity, lipids and other adipokines were not related to this allergic disease. Sensitivity analyses found no heterogeneity and horizontal pleiotropy in the study. Conclusion: The study provided some interesting, but not sufficient, evidence to suggest that interleukin-6 and adipocyte fatty acid-binding protein might play a protective role in the development of allergic rhinitis at the genetic level. These findings should be validated by more research. Level of evidence: This was a Mendelian randomized study with a level of evidence second only to clinical randomized trials, and higher than cohort and case-control studies.

19.
Article | IMSEAR | ID: sea-223556

ABSTRACT

Background & objectives: Vaccination and natural infection can both augment the immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but how omicron infection has affected the vaccine-induced and hybrid immunity is not well studied in Indian population. The present study was aimed to assess the durability and change in responses of humoral immunity with age, prior natural infection, vaccine type and duration with a minimum gap of six months post-two doses with either ChAdOx1 nCov-19 or BBV152 prior- and post-emergence of the omicron variant. Methods: A total of 1300 participants were included in this observational study between November 2021 and May 2022. Participants had completed at least six months after vaccination (2 doses) with either ChAdOx1 nCoV-19 or an inactivated whole virus vaccine BBV152. They were grouped according to their age (? or ?60 yr) and prior exposure of SARS-CoV-2 infection. Five hundred and sixteen of these participants were followed up after emergence of the Omicron variant. The main outcome was durability and augmentation of the humoral immune response as determined by anti-receptor-binding domain (RBD) immunoglobulin G (IgG) concentrations, anti-nucleocapsid antibodies and anti-omicron RBD antibodies. Live virus neutralization assay was conducted for neutralizing antibodies against four variants – ancestral, delta and omicron and omicron sublineage BA.5. Results: Before the omicron surge, serum anti-RBD IgG antibodies were detected in 87 per cent participants after a median gap of eight months from the second vaccine dose, with a median titre of 114 [interquartile range (IQR) 32, 302] BAU/ml. The levels increased to 594 (252, 1230) BAU/ml post- omicron surge (P<0.001) with 97 per cent participants having detectable antibodies, although only 40 had symptomatic infection during the omicron surge irrespective of vaccine type and previous history of infection. Those with prior natural infection and vaccination had higher anti-RBD IgG titre at baseline, which increased further [352 (IQR 131, 869) to 816 (IQR 383, 2001) BAU/ml] (P<0.001). The antibody levels remained elevated after a mean time gap of 10 months, although there was a decline of 41 per cent. The geometric mean titre was 452.54, 172.80, 83.1 and 76.99 against the ancestral, delta, omicron and omicron BA.5 variants in the live virus neutralization assay. Interpretation & conclusions: Anti-RBD IgG antibodies were detected in 85 per cent of participants after a median gap of eight months following the second vaccine dose. Omicron infection probably resulted in a substantial proportion of asymptomatic infection in the first four months in our study population and boosted the vaccine-induced humoral immune response, which declined but still remained durable over 10 months

20.
Int. j. morphol ; 41(2): 518-521, abr. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1440302

ABSTRACT

SUMMARY: S100 proteins belong group of calcium-binding proteins and are present in physiological intracellular and extracellular regulatory activities, such as cell differentiation, and act in inflammatory and neoplastic pathological processes. Recently, its expressions in the nervous system have been extensively studied, seeking to elucidate its action at the level of the thalamus: A structure of the central nervous system that is part of important circuits, such as somatosensory, behavioral, memory and cognitive, as well as being responsible for the transmission and regulation of information to the cerebral cortex. This article is an integrative review of scientific literature, which analyzed 12 studies present in Pubmed. The analysis showed that the relationship of S100 proteins and the thalamus has been described in neoplastic processes, mental disorders, hypoxia, trauma, stress, infection, Parkinson's disease and epilepsy. In summary, it is possible to conclude that this protein family is relevant as a marker in processes of thalamic injury, requiring further studies to better understand its clinical, preclinical meanings and its prognostic value.


Las proteínas S100 pertenecen al grupo de proteínas fijadoras de calcio y están presentes en actividades reguladoras fisiológicas intracelulares y extracelulares, como la diferenciación celular, y actúan en procesos patológicos inflamatorios y neoplásicos. Recientemente, sus expresiones en el sistema nervioso han sido ampliamente estudiadas, buscando dilucidar su acción a nivel del tálamo: una estructura del sistema nervioso central que forma parte de importantes circuitos, como el somatosensorial, conductual, de memoria y cognitivo, así como además de ser responsable de la transmisión y regulación de la información a la corteza cerebral. Este artículo es una revisión integradora de la literatura científica, que analizó 12 estudios presentes en Pubmed. El análisis mostró que la relación de las proteínas S100 y el tálamo ha sido descrita en procesos neoplásicos, trastornos mentales, hipoxia, trauma, estrés, infección, enfermedad de Parkinson y epilepsia. En resumen, es posible concluir que esta familia de proteínas es relevante como marcador en procesos de lesión talámica, requiriendo más estudios para comprender mejor su significado clínico, preclínico y su valor pronóstico.


Subject(s)
Humans , Thalamus/metabolism , S100 Proteins/metabolism , Calcium-Binding Proteins/metabolism , Biomarkers , Diencephalon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL