Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Indian J Med Microbiol ; 2011 Oct-Dec; 29(4): 372-378
Article in English | IMSEAR | ID: sea-143859

ABSTRACT

Purpose: There is an urgent need to detect a rapid field-based test to detect anthrax. We have developed a rapid, highly sensitive DNA-based method to detect the anthrax toxin lethal factor gene located in pXO1, which is necessary for the pathogenicity of Bacillus anthracis. Materials and Methods: We have adopted the enzyme-linked immunosorbent assay (ELISA) so that instead of capturing antibodies we capture the DNA of the target sequence by a rapid oligo-based hybridization and then detect the captured DNA with another oligoprobe that binds to a different motif of the captured DNA sequences at a dissimilar location. We chose anthrax lethal factor endopeptidase sequences located in pXO1 and used complementary oligoprobe, conjugated with biotin, to detect the captured anthrax specific sequence by the streptavidin-peroxidase-based colorimetric assay. Result: Our system can detect picomoles (pMoles) of anthrax (approximately 33 spores of anthrax) and is >1000 times more sensitive than the current ELISA, which has a detection range of 0.1 to 1.0 ng/mL. False positive results can be minimized when various parameters and the colour development steps are optimized. Conclusion: Our results suggest that this assay can be adapted for the rapid detection of minuscule amounts of the anthrax spores that are aerosolized in the case of a bioterrorism attack. This detection system does not require polymerase chain reaction (PCR) step and can be more specific than the antibody method. This method can also detect genetically engineered anthrax. Since, the antibody method is so specific to the protein epitope that bioengineered versions of anthrax may not be detected.

2.
Medical Journal of Chinese People's Liberation Army ; (12)1981.
Article in Chinese | WPRIM | ID: wpr-553918

ABSTRACT

Solving the problem of weapon injuries is of primary importance in military medical research. This article aims at presenting an inquiry into hightech weapon injuries in terms of the following: (1)classify hightech weapons into special, hightech conventional and new concept weapons, and expound their characteristics; (2)demonstrate from different angles the pressing necessity to step up researches on special (nuclear, chemical and biological) weapons; (3)discuss the types and injurious effects (high speed projectiles, war heads with numerous shrapnels and cluster bomb, multiple killing factors and high casualty inflicting power) of the everlastingly emerging hightech conventional weapons, and multiple injuries, and combined injuries produced thereby; (4)probe into new concept weapons, mainly the beamed (laser, microwave and infrasound) and non lethal weapon injuries; (5)bring up the question of confrontation of hightech weapons′ in the space in the future; (6)explore the tactics in four levels to confront hightech weapons, and research on medical protection against hightech weapon injuries in terms of basic sciences, medical logistics, and medical equipments.

SELECTION OF CITATIONS
SEARCH DETAIL