Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Journal of Biomedical Engineering ; (6): 892-899, 2018.
Article in Chinese | WPRIM | ID: wpr-773340

ABSTRACT

Optical coherence tomography (OCT) is a new technique applied in cardiovascular system. It can detect vessel intimal, small structure of plaque surface and discover small lesions with its high axial resolution and quantification character. Especially with the application of OCT in characterization of coronary atherosclerotic plaque, diagnosis and treatment strategy making, optimizing percutaneous coronary intervention therapy and assessment after stent planting make the OCT become an efficient tool for cardiovascular disease diagnosis and treatment. This paper presents a novel coronary vessel intimal sequence extraction method based on prior boundary constraints in OCT image. On the basis of conventional Chan-Vese model, we modified the evolutionary weight function to control the evolutionary rate of boundary by adding local information of boundary curve. At the same time, we added the gradient energy term and intimal boundary constraint term based on priori boundary condition to further control the evolutionary of boundary curve. At last, coronary vessel intimal is extracted in a sequence way. The comparison with vessel intimal, manual segmented by clinical scientists (golden standard), indicates that our coronary vessel intimal extraction method is robust to intimal boundary blur, distortion, guide wire shadow and plaque disturbs. The results of this study can be applied to clinical aid diagnosis and precise diagnosis and treatment.

2.
Yonsei Medical Journal ; : 1328-1337, 2015.
Article in English | WPRIM | ID: wpr-185887

ABSTRACT

PURPOSE: The purpose of this study is to explore the influence of segmentation of the upstream and downstream parent artery and hemodynamic boundary conditions (BCs) on the evaluated hemodynamic factors for the computational fluid dynamics (CFD) analysis of intracranial aneurysms. MATERIALS AND METHODS: Three dimensional patient-specific aneurysm models were analyzed by applying various combinations of inlet and outlet BCs. Hemodynamic factors such as velocity pattern, streamline, wall shear stress, and oscillatory shear index at the systolic time were visualized and compared among the different cases. RESULTS: Hemodynamic factors were significantly affected by the inlet BCs while there was little influence of the outlet BCs. When the inlet length was relatively short, different inlet BCs showed different hemodynamic factors and the calculated hemodynamic factors were also dependent on the inlet length. However, when the inlet length (L) was long enough (L>20D, where D is the diameter of inlet section), the hemodynamic factors became similar regardless of the inlet BCs and lengths. The error due to different inlet BCs was negligible. The effect of the outlet length on the hemodynamic factors was similar to that of the inlet length. CONCLUSION: Simulated hemodynamic factors are highly sensitive to inlet BCs and upstream parent artery segmentation. The results of this work can provide an insight into how to build models and to apply BCs for more accurate estimation of hemodynamic factors from CFD simulations of intracranial aneurysms.


Subject(s)
Adult , Humans , Arteries , Blood Flow Velocity , Hemodynamics , Hydrodynamics , Intracranial Aneurysm/physiopathology , Models, Cardiovascular , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL