Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 1951-1961, 2017.
Article in Chinese | WPRIM | ID: wpr-779811

ABSTRACT

Calcium signaling plays a critical role in response to various abiotic and biotic stresses in plants. Preliminarily evidence showed that calcium signaling perceived and transduced the harmful signaling generated from continuous cropping stress in R. glutinosa. To investigate the roles of calcium signaling in continuous cropping injury formation, the key genes involved in calcium signaling transduction were identified in R. glutinosa transcriptome through bioinformatic methods. Furthermore, the calcium ion concentration in both normal and continuous cropping R. glutinosa root cells were measured by potassium pyroantimonate precipitation and calcium fluorescence method. As a result, a set of 84 calcium signaling-related genes, including 5 CaMs, 12 CBLs, 21 CDPKs, 21 CIPKs, 16 CMLs, and 9 CRKs were captured in R. glutinosa transcriptome. The analysis of expression profile in continuous cropping compared to normal growth R. glutinosa indicated that continuous cropping stress significantly increased the expression of calcium signaling-related genes in continuous cropping R. glutinosa. At the same time, the abundance levels of 12 calcium signaling-related genes quantified by qPCR further validated the high expression of calcium signaling-related genes presented in continous cropping R. glutinosa. In addition, the continuous cropping condition significantly promoted the accumulation of intracellular calcium ions in R. glutinosa based on two methods of potassium pyroantimonate precipitation and calcium fluorescence. This study verified the possible roles of calcium signaling in the formation of continuous cropping injury on molecular and cellular level, which lays a solid foundation for illuminating formation mechanism of continuous cropping injury on molecular level.

2.
Chinese Journal of Pathophysiology ; (12): 2084-2089,2094, 2017.
Article in Chinese | WPRIM | ID: wpr-667647

ABSTRACT

AIM:To observe the influence of erythropoietin (EPO) on eryptosis and production of reactive oxygen species (ROS) in erythrocytes under stimulation of hydrogen peroxide (H2O2),.and to explore its related mecha-nism. METHODS:The erythrocyte suspension (1%) was cultured in vitro and divided into 3 groups:control group (C group,the culture medium was PBS),H2O2group (H group,the culture medium was PBS containing H2O2at final con-centration of 100 μmol/L) and EPO group (E group,the culture medium was PBS containing H2O2at final concentration of 100 μmol/L and EPO at final concentration of 2×104U/L). The erythrocytes were collected at 24 h and 60 h. The eryptosis was detected by flow cytometry with Annexin V staining. The production of ROS and intracellular calcium ion con-centration (Ca2+]i) were also analyzed by flow cytometry. RESULTS:The eryptosis in C group was increased as the in-cubating time extended. The eryptosis in H group was higher than that in C group (P<0.01),while that in E group was lower than that in H group(P<0.01). Meanwhile,ROS production andCa2+]iwere higher in H group than those in C group (P<0.01), but those were lower in E group than those in H group (P<0.05 or P<0.01). CONCLUSION:EPO inhibits eryptosis induced by H2O2and its mechanism may be related to antioxidant effect and change of Ca2+]i.

3.
Chinese Journal of Pathophysiology ; (12): 2192-2196, 2009.
Article in Chinese | WPRIM | ID: wpr-405482

ABSTRACT

AIM: To observe the effect of ginkgolide B (CB) on the intracellular calcium ion concentration ( [ Ca~(2+) ]_i) and mitochondrial function of cultured rat retinal neurons in vitro. METHODS: in vitro primary culture of rat retinal neurons was used in the experiment. The apoptosis model of glutamate - induced retinal neurons was established and co - cultured with ginkgolide B. The [ Ca~(2+) ]_i and mitochondrial membrane potential of the retinal neurons were detected by laser scanning confocal microscope. RESULTS: Glutamate decreased the survival rate of retinal neurons, increased the apoptosis and the [ Ca~(2+) ]_i, lowered the mitochondrial membrane potential. The [ Ca~(2+) ]_i was clearly diminished and the mitochondrial membrane potential was significantly increased with the GB intervention, and the apoptosis decreased significantly. CONCLUSION: GB protects retinal neurons from glutamate induced neurotoxicity. The effect of GB on retinal neurons might be due to its ability to decrease the [Ca~(2+) ]_i and increase mitochondrial membrane potential.

4.
Chinese Journal of General Surgery ; (12)2001.
Article in Chinese | WPRIM | ID: wpr-529297

ABSTRACT

0.05).Conclusions After hepatectomy,in rats is associated with an obvious insulin resistance,mainly due to the level of serum insulin was obviously decreased(P

5.
Chinese Journal of Pathophysiology ; (12)2000.
Article in Chinese | WPRIM | ID: wpr-533123

ABSTRACT

AIM:To observe the effect of ginkgolide B (GB) on the intracellular calcium ion concentration ([Ca2+]i) and mitochondrial function of cultured rat retinal neurons in vitro.METHODS:in vitro primary culture of rat retinal neurons was used in the experiment. The apoptosis model of glutamate-induced retinal neurons was established and co-cultured with ginkgolide B. The [Ca2+]i and mitochondrial membrane potential of the retinal neurons were detected by laser scanning confocal microscope.RESULTS:Glutamate decreased the survival rate of retinal neurons,increased the apoptosis and the [Ca2+]i,lowered the mitochondrial membrane potential. The [Ca2+]i was clearly diminished and the mitochondrial membrane potential was significantly increased with the GB intervention,and the apoptosis decreased significantly.CONCLUSION:GB protects retinal neurons from glutamate induced neurotoxicity. The effect of GB on retinal neurons might be due to its ability to decrease the [Ca2+]i and increase mitochondrial membrane potential.

SELECTION OF CITATIONS
SEARCH DETAIL