Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 42-60, 2020.
Article in English | WPRIM | ID: wpr-781551

ABSTRACT

The hepatic endoplasmic reticulum (ER)-anchored cytochromes P450 (P450s) are mixed-function oxidases engaged in the biotransformation of physiologically relevant endobiotics as well as of myriad xenobiotics of therapeutic and environmental relevance. P450 ER-content and hence function is regulated by their coordinated hemoprotein syntheses and proteolytic turnover. Such P450 proteolytic turnover occurs through a process known as ER-associated degradation (ERAD) that involves ubiquitin-dependent proteasomal degradation (UPD) and/or autophagic-lysosomal degradation (ALD). Herein, on the basis of available literature reports and our own recent findings of as well as experimental studies, we discuss the therapeutic and pathophysiological implications of altered P450 ERAD and its plausible clinical relevance. We specifically (i) describe the P450 ERAD-machinery and how it may be repurposed for the generation of antigenic P450 peptides involved in P450 autoantibody pathogenesis in drug-induced acute hypersensitivity reactions and liver injury, or viral hepatitis; (ii) discuss the relevance of accelerated or disrupted P450-ERAD to the pharmacological and/or toxicological effects of clinically relevant P450 drug substrates; and (iii) detail the pathophysiological consequences of disrupted P450 ERAD, contributing to non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) under certain synergistic cellular conditions.

2.
An. acad. bras. ciênc ; 89(1,supl): 577-589, May. 2017. tab, graf
Article in English | LILACS | ID: biblio-886660

ABSTRACT

ABSTRACT Peel extracts of litchi and rambutan, and that of tamarind seed coat were investigated in relation to their utility in skin-aging treatments. Standardized extracts of tamarind were significantly (p < 0.05) more efficient at O2 •- scavenging (IC50 = 27.44 ± 0.09) than those of litchi and rambutan (IC50 = 29.57 ± 0.30 and 39.49 ± 0.52 μg/ml, respectively) and the quercetin standard (IC50 = 31.88 ± 0.15 μg/ml). Litchi extract proved significantly (p < 0.05) more effective for elastase and collagenase inhibition (88.29 ± 0.25% and 79.46 ± 0.92%, respectively) than tamarind (35.43 ± 0.68% and 57.69 ± 5.97%) or rambutan (31.08 ± 0.38% and 53.99 ± 6.18%). All extracts were safe to human skin fibroblasts and inhibit MMP-2, with litchi extract showing significantly (p < 0.01) enhanced inhibition over the standard, vitamin C (23.75 ± 2.74% and 10.42 ± 5.91% at 0.05 mg/ml, respectively). Extracts suppress melanin production in B16F10 melanoma cells through inhibition of tyrosinase and TRP-2, with litchi extract being the most potent, even more so than kojic acid (standard). These results highlight the potential for adding value to agro-industrial waste, as the basis for the sustainable production of innovative, safe, anti-aging cosmetic products.


Subject(s)
Humans , Plant Extracts/pharmacology , Skin Aging/drug effects , Tamarindus/chemistry , Sapindaceae/chemistry , Litchi/chemistry , Antioxidants/pharmacology , Phenols/pharmacology , Administration, Cutaneous , Free Radical Scavengers/pharmacology , Cosmetics , Fibroblasts/drug effects , Fruit/chemistry , Antioxidants/isolation & purification
3.
Korean Journal of Orthodontics ; : 929-941, 1997.
Article in English | WPRIM | ID: wpr-650817

ABSTRACT

Optimal force for orthodontic treatment is the force that produces a rapid rate of tooth movement without discomfort to the patient or ensuing tissue damage. Recently considerable interest has been generated in the application of magnets as a way to obtain an optimal force. The purpose of the present study was to investigate the effect of static magnetic fields of Sm-Co magnets on molecular and cellular activities. The distance of erythrocyte sedimentation was measured directly, and the acticities and the ayntheses of Fe2+ -related enzymes (xatalase and NO synthase) and non Fe2+ -related enzyme (lactic dehydrogenase) were assayed by the spectrophotometer. The growth and the proliferation of osteoblast-like cells MC3T3-E1 were determined by the crystal violet staining and the 3H-thymidine incoroiration. The erythrocytes were exposed to the pole face flux density of 1,400 G(gauss), and the enzymes and osteoblast-like cells MC3T3-E1 were exposed to the flux density of 7,000 G. The results obtained were as follows: 1. The distance of sedimentation of erythrocyte was not affected by the static magnetic fields. 2. The activities of catalase and lactic dehydrogenase were not affected by the static magnetic fields. 3. The intracellular syntheses of NO synthase and latic dehydrogenase were not affected by the static magnetic fields. 4. The growth and the proliferation if cultured osteoblast-like cells MC3T3-E1 were not affected by the static magnetic fields. There results suggested that the molecular and cellular activities were not significantly influenced by the static magnetic fields.


Subject(s)
Humans , Blood Sedimentation , Catalase , Erythrocytes , Gentian Violet , Magnetic Fields , Nitric Oxide Synthase , Oxidoreductases , Tooth Movement Techniques
SELECTION OF CITATIONS
SEARCH DETAIL