Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica ; (12): 25-34, 2024.
Article in Chinese | WPRIM | ID: wpr-1005435

ABSTRACT

Understanding the research methods for drug protein targets is crucial for the development of new drugs, clinical applications of drugs, drug mechanisms, and the pathogenesis of diseases. Cellular thermal shift assay (CETSA), a target research method without modification, has been widely used since its development. Now, there are various CETSA-based technology combinations, such as mass spectrometry-based cellular thermal shift assay (MS-CETSA), isothermal dose response-cellular thermal shift assay (ITDR-CETSA), amplified luminescent proximity homogeneous assay-cellular thermal shift assay (Alpha-CETSA), etc., which combine their respective advantages and further expand the application scope of CETSA. These technologies are suitable for the entire drug development chain, from drug screening to monitoring the target binding and off-target toxicity of drugs in patients. Based on the author's research experience, this paper reviews the principles of CETSA and related binding technologies, their application in target discovery, and the progress of data processing and analysis in recent years, aiming to provide reference and reference for the further application of CETSA.

2.
Acta Pharmaceutica Sinica B ; (6): 1254-1270, 2022.
Article in English | WPRIM | ID: wpr-929346

ABSTRACT

Molecular targeted therapy has become an emerging promising strategy in cancer treatment, and screening the agents targeting at cancer cell specific targets is very desirable for cancer treatment. Our previous study firstly found that a secretory peroxidase of class III derived from foxtail millet bran (FMBP) exhibited excellent targeting anti-colorectal cancer (CRC) activity in vivo and in vitro, whereas its underlying target remains unclear. The highlight of present study focuses on the finding that cell surface glucose-regulated protein 78 (csGRP78) abnormally located on CRC is positively correlated with the anti-CRC effects of FMBP, indicating it serves as a potential target of FMBP against CRC. Further, we demonstrated that the combination of FMBP with the nucleotide binding domain (NBD) of csGRP78 interfered with the downstream activation of signal transducer and activator of transcription 3 (STAT3) in CRC cells, thus promoting the intracellular accumulation of reactive oxygen species (ROS) and cell grown inhibition. These phenomena were further confirmed in nude mice tumor model. Collectively, our study highlights csGRP78 acts as an underlying target of FMBP against CRC, uncovering the clinical potential of FMBP as a targeted agent for CRC in the future.

3.
Acta Pharmaceutica Sinica B ; (6): 246-261, 2022.
Article in English | WPRIM | ID: wpr-929291

ABSTRACT

The first rate-limiting enzyme of the serine synthesis pathway (SSP), phosphoglycerate dehydrogenase (PHGDH), is hyperactive in multiple tumors, which leads to the activation of SSP and promotes tumorigenesis. However, only a few inhibitors of PHGDH have been discovered to date, especially the covalent inhibitors of PHGDH. Here, we identified withangulatin A (WA), a natural small molecule, as a novel covalent inhibitor of PHGDH. Affinity-based protein profiling identified that WA could directly bind to PHGDH and inactivate the enzyme activity of PHGDH. Biolayer interferometry and LC-MS/MS analysis further demonstrated the selective covalent binding of WA to the cysteine 295 residue (Cys295) of PHGDH. With the covalent modification of Cys295, WA blocked the substrate-binding domain (SBD) of PHGDH and exerted an allosteric effect to induce PHGDH inactivation. Further studies revealed that with the inhibition of PHGDH mediated by WA, the glutathione synthesis was decreased and intracellular levels of reactive oxygen species (ROS) were elevated, leading to the inhibition of tumor proliferation. This study indicates WA as a novel PHGDH covalent inhibitor, which identifies Cys295 as a novel allosteric regulatory site of PHGDH and holds great potential in developing anti-tumor agents for targeting PHGDH.

4.
Acta Pharmaceutica Sinica B ; (6): 3481-3492, 2021.
Article in English | WPRIM | ID: wpr-922809

ABSTRACT

@#Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths, characterized by highly hypoxic tumor microenvironment. Hypoxia-inducible factor-1α (HIF-1α) is a major regulator involved in cellular response to changes of oxygen levels, supporting the adaptation of tumor cells to hypoxia. Bruceine D (BD) is an isolated natural quassinoid with multiple anti-cancer effects. Here, we identified BD could significantly inhibit the HIF-1α expression and its subsequently mediated HCC cell metabolism. Using biophysical proteomics approaches, we identified inhibitor of β-catenin and T-cell factor (ICAT) as the functional target of BD. By targeting ICAT, BD disrupted the interaction of β-catenin and ICAT, and promoted β-catenin degradation, which in turn induced the decrease of HIF-1α expression. Furthermore, BD could inhibit HCC cells proliferation and tumor growth in vivo, and knockdown of ICAT substantially increased resistance to BD treatment in vitro. Our data highlight the potential of BD as a modulator of β-catenin/HIF-1α axis mediated HCC metabolism.

5.
Acta Pharmaceutica Sinica B ; (6): 3134-3149, 2021.
Article in English | WPRIM | ID: wpr-922800

ABSTRACT

Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) cascade is an effective therapeutic target for immune checkpoint blockade (ICB) therapy. Targeting PD-L1/PD-1 axis by small-molecule drug is an attractive approach to enhance antitumor immunity. Using flow cytometry-based assay, we identify tubeimoside-1 (TBM-1) as a promising antitumor immune modulator that negatively regulates PD-L1 level. TBM-1 disrupts PD-1/PD-L1 interaction and enhances the cytotoxicity of T cells toward cancer cells through decreasing the abundance of PD-L1. Furthermore, TBM-1 exerts its antitumor effect in mice bearing Lewis lung carcinoma (LLC) and B16 melanoma tumor xenograft

6.
Acta Pharmaceutica Sinica B ; (6): 3553-3566, 2021.
Article in English | WPRIM | ID: wpr-922424

ABSTRACT

Rescuing cells from stress damage emerges a potential therapeutic strategy to combat myocardial infarction. Protocatechuic aldehyde (PCA) is a major phenolic acid in Chinese herb Danshen (

7.
Acta Pharmaceutica Sinica B ; (6): 1853-1866, 2021.
Article in English | WPRIM | ID: wpr-888838

ABSTRACT

Mitochondrial shape rapidly changes by dynamic balance of fusion and fission to adjust to constantly changing energy demands of cancer cells. Mitochondrial dynamics balance is exactly regulated by molecular motor consisted of myosin and actin cytoskeleton proteins. Thus, targeting myosin-actin molecular motor is considered as a promising strategy for anti-cancer. In this study, we performed a proof-of-concept study with a natural-derived small-molecule J13 to test the feasibility of anti-cancer therapeutics

8.
Chinese Journal of Biotechnology ; (12): 1131-1138, 2021.
Article in Chinese | WPRIM | ID: wpr-878619

ABSTRACT

Identification of the target proteins of small molecule drugs is crucial for understanding the mechanisms of drug actions and its side effects. Conventional methods require chemical modification, which might alter the activities of the drugs. Various label-free techniques have been developed to identify drug target proteins without chemical modifications. This includes drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP) and many others. Here we review the principles and applications of these label-free techniques, their advantages and limitations, as well as the most recent advances.


Subject(s)
Drug Delivery Systems , Pharmaceutical Preparations , Proteins
9.
Acta Pharmaceutica Sinica B ; (6): 746-765, 2020.
Article in English | WPRIM | ID: wpr-828845

ABSTRACT

Protein neddylation is a post-translational modification which transfers the ubiquitin-like protein NEDD8 to a lysine residue of the target substrate through a three-step enzymatic cascade. The best-known substrates of neddylation are cullin family proteins, which are the core component of Cullin-RING E3 ubiquitin ligases (CRLs). Given that cullin neddylation is required for CRL activity, and CRLs control the turn-over of a variety of key signal proteins and are often abnormally activated in cancers, targeting neddylation becomes a promising approach for discovery of novel anti-cancer therapeutics. In the past decade, we have witnessed significant progress in the field of protein neddylation from preclinical target validation, to drug screening, then to the clinical trials of neddylation inhibitors. In this review, we first briefly introduced the nature of protein neddylation and the regulation of neddylation cascade, followed by a summary of all reported chemical inhibitors of neddylation enzymes. We then discussed the structure-based targeting of protein-protein interaction in neddylation cascade, and finally the available approaches for the discovery of new neddylation inhibitors. This review will provide a focused, up-to-date and yet comprehensive overview on the discovery effort of neddylation inhibitors.

10.
Acta Pharmaceutica Sinica ; (12): 1439-1452, 2020.
Article in Chinese | WPRIM | ID: wpr-823293

ABSTRACT

Medicinally active molecules are those that have pharmacological effects. Research on protein targets of these molecules not only clarifies their mechanism of action, but also deepens our understanding of biological systems. Here we review recent advances in protein targets of drugs used in clinical practice or in preclinical research. They have various functions including anti-inflammatory, anti-malarial, anti-tumor and other biological activities. Activity-based protein profiling (ABPP) and cellular thermal shift assay (CETSA) are two useful methods to identify the protein targets of small molecules. ABPP depends on a derivative active molecule probe to pull down the protein targets to reveal the interaction mechanisms between the active molecules and targets. Drug target engagement also can be assessed by means of CETSA based on ligand-induced changes in protein thermal stability. In the CETSA approach, the active molecules do not need to be chemically modified. Combining the CETSA method with quantitative mass spectrometry is an effective approach to study the effect of compounds on the thermal profile of a cellular proteome and identify the protein targets. ABPP and CETSA can be complementary and effectively clarify the protein targets. The study of protein targets will help reveal the mechanism of action of medicinal molecules, reveal toxic mechanisms and aid in the discovery of new medicinal targets to promote the process of drug development.

11.
Acta Pharmaceutica Sinica B ; (6): 537-544, 2019.
Article in English | WPRIM | ID: wpr-774970

ABSTRACT

We report in this study the identification of a natural product-like antagonist () of Vps34 as a potent autophagy modulator structure-based virtual screening. Aurone derivative strongly inhibited Vps34 activity in cell-free and cell-based assays. Significantly, prevents autophagy in human cells induced either by starvation or by an mTOR inhibitor. modeling and kinetic data revealed that could function as an ATP-competitive inhibitor of Vps34. Moreover, it suppressed autophagy and without inducing heart or liver damage in mice. could be utilized as a new motif for more selective and efficacious antagonists of Vps34 for the potential treatment of autophagy-related human diseases.

SELECTION OF CITATIONS
SEARCH DETAIL