Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Electron. j. biotechnol ; 19(6): 79-83, Nov. 2016. ilus
Article in English | LILACS | ID: biblio-840317

ABSTRACT

Background: Cold-active endo-1, 4-β-glucanase (EglC) can decrease energy costs and prevent product denaturation in biotechnological processes. However, the nature EglC from C. farmeri A1 showed very low activity (800 U/L). In an attempt to increase its expression level, C. farmeri EglC was expressed in Escherichia coli as an N-terminal fusion to protein S (ProS) from Myxococcus xanthus. Results: A novel expression vector, pET(ProS-EglC), was successfully constructed for the expression of C. farmeri EglC in E. coli. SDS-PAGE showed that the recombinant protein (ProS-EglC) was approximately 60 kDa. The activity of ProS-EglC was 12,400 U/L, which was considerably higher than that of the nature EglC (800 U/L). ProS-EglC was active at pH 6.5-pH 8.0, with optimum activity at pH 7.0. The recombinant protein was stable at pH 3.5-pH 6.5 for 30 min. The optimal temperature for activity of ProS-EglC was 30°C-40°C. It showed greater than 50% of maximum activity even at 5°C, indicating that the ProS-EglC is a cold-active enzyme. Its activity was increased by Co2+ and Fe2+, but decreased by Cd2+, Zn2+, Li+, methanol, Triton-X-100, acetonitrile, Tween 80, and SDS. Conclusions: The ProS-EglC is promising in application of various biotechnological processes because of its cold-active characterizations. This study also suggests a useful strategy for the expression of foreign proteins in E. coli using a ProS tag.


Subject(s)
Cellulases/metabolism , Citrobacter/enzymology , Escherichia coli/enzymology , Myxococcus xanthus/enzymology , Cold Temperature , Genetic Vectors , Recombinant Proteins
2.
Braz. j. microbiol ; 42(4): 1608-1615, Oct.-Dec. 2011. ilus, graf, tab
Article in English | LILACS | ID: lil-614627

ABSTRACT

A cellulolytic bacterial strain, designated P118, isolated from the gut of the tropical fish Parotocinclus maculicauda was identified as belonging to the genus Paenibacillus based on phenotypic and chemotaxonomic characteristics and the 16S rRNA gene sequence. The novel strain was Gram-positive, spore-forming and rod-shaped. Catalase but not oxidase was produced. Carboxymethylcellulose was hydrolyzed but starch or gelatin was not. Acetoin production was negative whereas nitrate reduction and urease production were positive. Many carbohydrates served as carbon sources for growth. MK-7 was the predominant isoprenoid quinone. Anteiso-C15:0 (38.73 percent) and C16:0 (20.85 percent) were the dominant cellular fatty acids. Strain P118 was closely related to Paenibacillus amylolyticus NRRL NRS-290, P. pabuli HSCC 492, P. tundrae Ab10b, P. xylanexedens B22a, and P. tylopili MK2 with 98.3-98.8 percent 16S rRNA gene sequence similarity. The results presented here suggest that strain P118 represents a novel species of the genus Paenibacillus and it is a potential strain for further studies concerning its role in the production of industrially important products from cellulosic biomass.


Subject(s)
Animals , Biomass , Bacillus/isolation & purification , Catfishes , Chemotactic Factors , Carboxymethylcellulose Sodium/analysis , Catalase/isolation & purification , Oxidoreductases , Phenotype , Methods , Methods
3.
Academic Journal of Xi&#39 ; an Jiaotong University;(4): 184-188, 2009.
Article in Chinese | WPRIM | ID: wpr-844780

ABSTRACT

Strains from the cellulose-containing environment were collected. Primary screening (by filter-paper Hutchison solid culture medium and sodium carboxymethylcellulose solid culture medium) and reelection(by filter-paper inorganic salt culture medium and sodium carboxymethylcellulose Congo red culture medium) indicated that five strains obtained were best suited for high performance cellulose degradation. Determination of sodium carboxymethylcellulose activity(CMCA) and filter paper activity(FPA) was accomplished for each of the five. The strongest of the five in CMCA and FPA was applied to the production of cellulose bioethanol by separate hydrolysis and fermentation(SHF) and simultaneous saccharification and fermentation(SSF) respectively.

4.
Journal of Pharmaceutical Analysis ; (6): 184-188, 2009.
Article in Chinese | WPRIM | ID: wpr-621655

ABSTRACT

Strains from the cellulose-containing environment were collected. Primary screening(by filter-paper Hutchison solid culture medium and sodium carboxymethylcellulose solid culture medium) and reelection(by filter-paper inorganic salt culture medium and sodium carboxymethylcellulosc Congo red coltnre medium) indicated that five strains obtained were best suited for high performance cellulose degradation. Determination of sodium carboxymethylcellulose activity(CMCA) and filter paper activity(FPA) was accomplished for each of the five. The strongest of the five in CMCA and FPA was applied to the production of cellulose bioethanol by separate hydrolysis and fermentation(SHF) and simultaneous saccharification and fermentation(SSF) respectively.

5.
Microbiology ; (12)1992.
Article in Chinese | WPRIM | ID: wpr-581949

ABSTRACT

A new method based on adherence of cellulolytic bacteria to insoluble cellulose for isolation and purification of thermophilic cellulolytic anaerobes was reported, in which Hungate anaerobic operating techniques were used to roll tubes with insoluble cellulose powder as substrate.

6.
Microbiology ; (12)1992.
Article in Chinese | WPRIM | ID: wpr-684450

ABSTRACT

In this paper,300 bacteria strains and 31fungi strain were isolated from Qinghai plateau.The numbers of cellulose degradation organisms in soil is 2.6?10 5/g. A strain Trichoderma koningii No.0143 which produces cellulase was isolated from 11 fungi in the east area in QingHai,its FPA activity was 15u/g. It can be used in enzymatic feed.

SELECTION OF CITATIONS
SEARCH DETAIL