Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Acta Anatomica Sinica ; (6): 383-391, 2023.
Article in Chinese | WPRIM | ID: wpr-1015192

ABSTRACT

Objective To understand the characteristics and developmental differences between cerebral organoids in vitro and normal cerebral cortices in vivo. Methods 1. Grouping: cerebral cortices in vivo group and cultured cerebral organoids in vitro group. 2. Sample collection: cortical tissues were collected from Kunming mouse embryos at embryonic day 7.5(E7.5), E9.5, E11.5, E14.5, and postnatal day 3 (P3) or P7. Three specimens were taken from each group. Meanwhile, cerebral organoids were cultured with mouse induced pluripotent stem cells (iPSCs), and samples at different culture time point were collected, and more than 3 samples were collected at each time point. 3. Detection method: the distribution of different types of cells in each group of specimens was analyzed by immunofluorescent staining. Results While relative similarities between in vivo cerebral cortical development and the cerebral organoids in vitro were observed, including the histogenesis, and the morphological differentiation of nerve cells and glial cells, the lamellar architecture of cerebral cortex in mouse brain was not observed in cerebral organoids. Conclusion The development of cerebral organoids in vitro has some similarity with body's cortical development. Therefore, cerebral organoids can be used to a substitution of cortex and diseases' models, but improvement of the existing technologies is necessary.

2.
Protein & Cell ; (12): 823-833, 2017.
Article in English | WPRIM | ID: wpr-758016

ABSTRACT

The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex. Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases. Several previous efforts have shown to grow neural organoid in culture dishes successfully, however we demonstrate a new paradigm that recapitulates neocortical development process with VZ, OSVZ formation and the lamination organization of cortical layer structure. In addition, using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient, we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids, suggesting a new strategy to study human developmental diseases in central nerve system.


Subject(s)
Humans , Action Potentials , Physiology , Biomarkers , Metabolism , Cell Culture Techniques , Embryoid Bodies , Cell Biology , Metabolism , Gene Expression , Induced Pluripotent Stem Cells , Cell Biology , Metabolism , Lateral Ventricles , Cell Biology , Metabolism , Microcephaly , Genetics , Metabolism , Pathology , Models, Biological , Mutation , Neocortex , Cell Biology , Metabolism , Nerve Tissue Proteins , Genetics , Neurogenesis , Genetics , Neurons , Cell Biology , Metabolism , Organoids , Cell Biology , Metabolism , PAX6 Transcription Factor , Genetics , Metabolism , Patch-Clamp Techniques , SOXB1 Transcription Factors , Genetics , Metabolism , Zonula Occludens-1 Protein , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL