Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Neuroscience Bulletin ; (6): 359-372, 2022.
Article in English | WPRIM | ID: wpr-929095

ABSTRACT

Irritable bowel syndrome is a gastrointestinal disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that injury and inflammation during the neonatal period have long-term effects on tissue structure and function in the adult that may predispose to gastrointestinal diseases. In this study we aimed to investigate how the epigenetic regulation of DNA demethylation of the p2x7r locus guided by the transcription factor GATA binding protein 1 (GATA1) in spinal astrocytes affects chronic visceral pain in adult rats with neonatal colonic inflammation (NCI). The spinal GATA1 targeting to DNA demethylation of p2x7r locus in these rats was assessed by assessing GATA1 function with luciferase assay, chromatin immunoprecipitation, patch clamp, and interference in vitro and in vivo. In addition, a decoy oligodeoxynucleotide was designed and applied to determine the influence of GATA1 on the DNA methylation of a p2x7r CpG island. We showed that NCI caused the induction of GATA1, Ten-eleven translocation 3 (TET3), and purinergic receptors (P2X7Rs) in astrocytes of the spinal dorsal horn, and demonstrated that inhibiting these molecules markedly increased the pain threshold, inhibited the activation of astrocytes, and decreased the spinal sEPSC frequency. NCI also markedly demethylated the p2x7r locus in a manner dependent on the enhancement of both a GATA1-TET3 physical interaction and GATA1 binding at the p2x7r promoter. Importantly, we showed that demethylation of the p2x7r locus (and the attendant increase in P2X7R expression) was reversed upon knockdown of GATA1 or TET3 expression, and demonstrated that a decoy oligodeoxynucleotide that selectively blocked the GATA1 binding site increased the methylation of a CpG island in the p2x7r promoter. These results demonstrate that chronic visceral pain is mediated synergistically by GATA1 and TET3 via a DNA-demethylation mechanism that controls p2x7r transcription in spinal dorsal horn astrocytes, and provide a potential therapeutic strategy by targeting GATA1 and p2x7r locus binding.


Subject(s)
Animals , Rats , Astrocytes/metabolism , DNA Demethylation , Epigenesis, Genetic , GATA1 Transcription Factor/metabolism , Inflammation/metabolism , Oligodeoxyribonucleotides/metabolism , Rats, Sprague-Dawley , Receptors, Purinergic P2X7/metabolism , Visceral Pain/metabolism
2.
Acta cir. bras ; 37(2): e370203, 2022. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1374068

ABSTRACT

Purpose: To analyze the effect and mechanism of dexmedetomidine (DEX) analgesia pretreatment on functional chronic visceral pain in rats. Methods: Rats were divided into six groups: W1, W2, W3, W4, W5, and W6. The behavioral changes and electrophysiological indexes of rats in each group before and after DEX treatment were detected. Results: The levels of abdominal withdrawal reflex (AWR) in W5 and W6 groups were significantly lower than those in group W3, while the levels of thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) were significantly higher than those in group W3 (p < 0.05). The electromyographic signals of W1, W5, and W6 groups showed little fluctuation, while those of groups W2, W3, and W4 showed obvious fluctuation. TLR4 mRNA expression, IRF3, P65, and phosphorylation levels in W4, W5, and W6 groups were significantly lower than those in group W2 (p < 0.05). Conclusions: Dexmedetomidine epidural anesthesia pretreatment could significantly inhibit visceral pain response in rats with functional chronic visceral pain, and its mechanism was related to the activation of TLR4 in spinal dorsal horn tissue of rats and the activation inhibition of IRF3 and P65 in the downstream key signals.


Subject(s)
Animals , Rats , Dexmedetomidine/administration & dosage , Toll-Like Receptor 4/analysis , Visceral Pain/drug therapy , Analgesia/methods , Electrophysiological Phenomena
3.
Article in Chinese | WPRIM | ID: wpr-811918

ABSTRACT

@#To study the effects of quercetin(Que)on the electric current of Nav1. 8(INav1. 8)in rat dorsal root ganglion(DRG)neurons, dose-effect relationship of Que on INav1. 8 and the activation and inactivation properties of voltage-dependent Nav1. 8 influenced by Que were studied by using the whole-cell patch clamp technique in fresh isolated rat DRG neurons. It was found that diffeent concerntrations of Que(10, 30, 100 μmol/L)could inhibit INav1. 8 peak value of DRG neurons in concentration-dependent manner. The inhibition of peak currents were(15. 32±3. 43)%, (22. 92±8. 24)% and(47. 29±11. 42)% respectively, the IC50 was 121. 38 μmol/L and the Hill coefficient was 0. 76. In the existence of Que(100 μmol/L), the activation curve of Nav1. 8 channel in DRG was slightly shifted to depolarizing direction for 0. 83 mV, and the inactivation curve was shifted to hyperpolarizing direction for 1. 86 mV. Compared with the stage before intervention, the half-activation voltage(V1/2=-40. 23±0. 25 mV)was significantly different(P< 0. 01). In conclusion, Que inhibits the Nav1. 8 channel activity in dose and voltage-dependent manner, which may count for the reduction of algesthesia transmission and the alleviation of chronic visceral pain.

SELECTION OF CITATIONS
SEARCH DETAIL