Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add filters








Year range
1.
China Journal of Chinese Materia Medica ; (24): 52-59, 2023.
Article in Chinese | WPRIM | ID: wpr-970501

ABSTRACT

This study investigated the choroplast genome sequence of wild Atractylodes lancea from Yuexi in Anhui province by high-throughput sequencing, followed by characterization of the genome structure, which laid a foundation for the species identification, analysis of genetic diversity, and resource conservation of A. lancea. To be specific, the total genomic DNA was extracted from the leaves of A. lancea with the improved CTAB method. The chloroplast genome of A. lancea was sequenced by the high-throughput sequencing technology, followed by assembling by metaSPAdes and annotation by CPGAVAS2. Bioiformatics methods were employed for the analysis of simple sequence repeats(SSRs), inverted repeat(IR) border, codon bias, and phylogeny. The results showed that the whole chloroplast genome of A. lancea was 153 178 bp, with an 84 226 bp large single copy(LSC) and a 18 658 bp small single copy(SSC) separated by a pair of IRs(25 147 bp). The genome had the GC content of 37.7% and 124 genes: 87 protein-coding genes, 8 rRNA genes, and 29 tRNA genes. It had 26 287 codons and encoded 20 amino acids. Phylogenetic analysis showed that Atractylodes species clustered into one clade and that A. lancea had close genetic relationship with A. koreana. This study established a method for sequencing the chloroplast genome of A. lancea and enriched the genetic resources of Compositae. The findings are expected to lay a foundation for species identification, analysis of genetic diversity, and resource conservation of A. lancea.


Subject(s)
Phylogeny , Atractylodes/genetics , Genome, Chloroplast , Whole Genome Sequencing , Microsatellite Repeats , Lamiales
2.
Chinese Journal of Biotechnology ; (12): 670-684, 2023.
Article in Chinese | WPRIM | ID: wpr-970399

ABSTRACT

The structure and size of the chloroplast genome of Castanopsis hystrix was determined by Illumina HiSeq 2500 sequencing platform to understand the difference between C. hystrix and the chloroplast genome of the same genus, and the evolutionary position of C. hystrix in the genus, so as to facilitate species identification, genetic diversity analysis and resource conservation of the genus. Bioinformatics analysis was used to perform sequence assembly, annotation and characteristic analysis. R, Python, MISA, CodonW and MEGA 6 bioinformatics software were used to analyze the genome structure and number, codon bias, sequence repeats, simple sequence repeat (SSR) loci and phylogeny. The genome size of C. hystrix chloroplast was 153 754 bp, showing tetrad structure. A total of 130 genes were identified, including 85 coding genes, 37 tRNA genes and 8 rRNA genes. According to codon bias analysis, the average number of effective codons was 55.5, indicating that the codons were highly random and low in bias. Forty-five repeats and 111 SSR loci were detected by SSR and long repeat fragment analysis. Compared with the related species, chloroplast genome sequences were highly conserved, especially the protein coding sequences. Phylogenetic analysis showed that C. hystrix is closely related to the Hainanese cone. In summary, we obtained the basic information and phylogenetic position of the chloroplast genome of red cone, which will provide a preliminary basis for species identification, genetic diversity of natural populations and functional genomics research of C. hystrix.


Subject(s)
Phylogeny , Genome, Chloroplast , Codon/genetics , Genomics , Chloroplasts/genetics
3.
Chinese Journal of Biotechnology ; (12): 2939-2953, 2023.
Article in Chinese | WPRIM | ID: wpr-981242

ABSTRACT

The genomic DNA of Rubus rosaefolius was extracted and sequenced by Illumina NovaSeq platform to obtain the complete chloroplast genome sequence, and the sequence characteristics and phylogenetic analysis of chloroplast genes were carried out. The results showed that the complete chloroplast genome of the R. rosaefolius was 155 650 bp in length and had a typical tetrad structure, including two reverse repeats (25 748 bp each), a large copy region (85 443 bp) and a small copy region (18 711 bp). A total of 131 genes were identified in the whole genome of R. rosaefolius chloroplast, including 86 protein coding genes, 37 tRNA genes and 8 rRNA genes. The GC content of the whole genome was 36.9%. The genome of R. rosaefolius chloroplast contains 47 scattered repeats and 72 simple sequence repeating (SSR) loci. The codon preference is leucine codon, and the codon at the end of A/U is preferred. Phylogenetic analysis showed that R. rosaefolius had the closest relationship with R. taiwanicola, followed by R. rubraangustifolius and R. glandulosopunctatus. The chloroplast genome characteristics and phylogenetic analysis of R. rosaefolius provide a theoretical basis for its genetic diversity research and chloroplast development and utilization.


Subject(s)
Phylogeny , Rubus/genetics , Genome, Chloroplast , Fruit/genetics , Codon/genetics
4.
Chinese Journal of Biotechnology ; (12): 2227-2237, 2019.
Article in Chinese | WPRIM | ID: wpr-781642

ABSTRACT

Enzymes are widely used in medical and biopharmaceuticals. They can be used not only for various disease treatments, but also clinical diagnosis. The use of microorganisms to express heterologous proteins has become the easiest and fastest way to obtain enzymes. In order to obtain high concentration and high-quality heterologous proteins, a common method is codon optimization of gene sequences. The traditional codon optimization strategy is mainly based on codon bias and GC content, ignoring complex and varied factors such as translational dynamics and metabolic levels. We provide here comprehensive codon optimization strategy based on gene level, transcriptional level, translational level, post-translational level and metabolic level, mainly including codon bias, codon harmonization, codon sensitivity, adjustment of gene sequence structure and some other influencing factors. We also summarize the aspects of strategy content, theoretical support and application. Besides, the advantages and disadvantages of each strategy are also systematically compared, providing an all-round, multi-level and multi-selection optimization strategy for heterogeneous protein expression, and also providing references for the enzyme industry and biopharmaceuticals.


Subject(s)
Base Composition , Codon
5.
Genomics & Informatics ; : 38-47, 2017.
Article in English | WPRIM | ID: wpr-69980

ABSTRACT

Research into new methods for identifying highly expressed genes in anonymous genome sequences has been going on for more than 15 years. We presented here an alternative approach based on modified score of relative codon usage bias to identify highly expressed genes in crenarchaeal genomes. The proposed algorithm relies exclusively on sequence features for identifying the highly expressed genes. In this study, a comparative analysis of predicted highly expressed genes in five crenarchaeal genomes was performed using the score of Modified Relative Codon Bias Strength (MRCBS) as a numerical estimator of gene expression level. We found a systematic strong correlation between Codon Adaptation Index and MRCBS. Additionally, MRCBS correlated well with other expression measures. Our study indicates that MRCBS can consistently capture the highly expressed genes.


Subject(s)
Anonyms and Pseudonyms , Archaea , Base Composition , Bias , Codon , Gene Expression , Genome
6.
Chinese Journal of Biotechnology ; (12): 1381-1394, 2016.
Article in Chinese | WPRIM | ID: wpr-243714

ABSTRACT

Deficient activity of endo-1,4-beta-glucanase II (Cel5A) secreted by Trichoderma reesei is one of the challenges involved in effective cellulase saccharification of cellulosic substrates. Therefore, we expressed Cel5A in Pichia pastoris by constructing a recombinant strain. With the gene optimization based on codon bias, and the construction of expression vector pPIC9K-eg2, the optimized gene was electro-transformed into P. pastoris GS115 to form transformants. Then, a high Cel5A activity producing recombinant, namely P. pastoris GS115-EG Ⅱ, was selected on G-418 resistant plates, followed by shake-flask cultivation. Enzyme characterization showed that the recombinant Cel5A reacted optimally at pH 4.5 and 60 ℃, with 50 kDa of molecular weight, preferentially degrading amorphous cellulose. Recombinant Cel5A was not significantly different from the native T. reesei Cel5A. Moreover, a shake-flask fermentation of the recombinant strain was optimized as below: incubation temperature 28 ℃, initial pH 5.0, inoculum volume 2%, methanol addition (per 24 h) 1.5% (V/V), sorbitol addition (per 24 h) 4 g/L and Tween 80 4 g/L. Under above optimized condition, the recombinant produced 24.0 U/mL of the Cel5A after 192 h fermentation. When incubated in a 5 L fermentation, Cel5A enzyme activity reached 270.9 U/mL at 180 h, with 4.16 g/L of the total protein. The study indicates that the recombinant strain P. pastoris GS115-EG Ⅱ is extremely suitable for heterologous expression of T. reesei cellulase Cel5A. And the recombinant Cel5A can be used as an alternative to the native T. reesei Cel5A in development of a commercially relevant enzyme based biorefinery process.

7.
China Journal of Chinese Materia Medica ; (24): 4165-4168, 2016.
Article in Chinese | WPRIM | ID: wpr-272717

ABSTRACT

This study aimed to provide guidance for the heterogenous gene expression, gene prediction and species evolution by analyzing codon usage bias of Catharanthus roseus.The codon composition and usage bias of 30 437 high-confidence coding sequences from C.roseus were analyzed and the proportion of rare codons of Escherichia coli and Saccharomyces cerevisiae in 25 genes involved in the biosynthesis of terpenoid indole alkaloids (TIAs) in C.roseus were calculated.The results showed that the average GC content of the genes was 42.47%; the average GC content of the third bases in codon was 35.89%.The relative synonymous codon usage (RSCU) of 28 codons were greater than 1 and 26 of them ended with A or T.The above 25 genes involved in TIA biosynthesis contained much more rare condons of E.coli than that of S.cerevisiae.It was concluded that C.roseus mainly prefered the codons ending with A or T and the rule of codon usage was more different to E.coli than S.cerevisiae.Thus, S.cerevisiae may be more suitable host for heterologous expression of these genes.

8.
Chinese Traditional and Herbal Drugs ; (24): 3071-3078, 2015.
Article in Chinese | WPRIM | ID: wpr-853926

ABSTRACT

Objective: Farnesyl pyrophosphate synthase (FPS) is the key enzyme in biosynthesis pathway of astragaloside IV. The purpose of the experiment was to provide the theory basis for selecting appropriate expression systems and regulating the content of astragaloside IV. Method: FPS gene coding sequence was cloned based on Astragalus membranaceus from Changbai Mountain. Synonymous codons usage of FPS gene was analyzed by EMBOSS and Codon W programs and compared with the genome of other seven plants, such as Zea mays and Artemisia apiacea, and E. coli. Results: FPS gene of A. membranaceus was bias toward the codon with A and T at the third codon position and there are 22 codons showing the significant differences between FPS gene of A. membranaceus and E. coli genome. Conclution: The codons need to be optimized to improve the expression level of FPS gene in E. coli.

9.
Article in English | IMSEAR | ID: sea-158080

ABSTRACT

Current approach for controlling of tuberculosis is going on by recommended doses of vaccines. Codon optimization and simulation techniques are used to improve the protein expression in living organism by increasing their translational efficiency of gene of interest. We have designed; optimized the codon and simulated in nineteen indigenous genes of Mycobacterium tuberculosis H37Rv in the Escherichia coli. We minimized the G+C content in optimized genes from 64.75% to 59.67% of the studied genes as the richness of G+C content is reflected in a strong bias. CAI and AT of optimized DNA were enhanced by 1.9 (47.8%) and 1.1 (12.5%) fold more with respect to its native type. Our finding indicates the optimized genes can be useful for over expression in host and the study provides a new insight for the emerging research in synthetic biology.

10.
Virologica Sinica ; (4): 226-232, 2007.
Article in Chinese | WPRIM | ID: wpr-634200

ABSTRACT

To achieve higher level expression of Interferon α2b (IFN-α2b) in methylotrophic yeast (Pichia pastoris), a cDNA fragment coding for the mature IFN-α2b was designed and synthesized based on the synonymous codon bias of P. pastoris and optimized G+C content. The synthetic IFN-α2b was inserted into the secreted expression vector pPICZαA, and then integrated into P. pastoris GS115 genome by electroporation. Multi-copy integrants in the Mut+ recombinant P. pastoris strain were screened by high concentrations of Zeocin. 120 hours culturing allowed expression of the IFN-α2b transformant up to 810 mg/L as detected by SDS-PAGE and quantitative methods. In addition, Western blot analysis showed that the recombinant proteins had immunogenicity. The significant antiviral activity of the recombinant IFN-α2b protein was verified by WISH/ VSV system, which was 3.3×105 IU/mL.

11.
Journal of Medical Postgraduates ; (12)2003.
Article in Chinese | WPRIM | ID: wpr-595376

ABSTRACT

Objective: Proto-oncogene Zbtb7A has been characterized as a molecular switch in the process of cancer initiation and development.Our goal is to obtain the POZ domain of the Zbtb7A protein and prepare its polyclonal antibodies.Methods: We optimized the coding sequence of the POZ domain according to the codon bias of E.coli and synthesized the sequence with two-step PCR,which was then introduced into the pET-26b(+) vector to express the protein.The recombinant protein was analyzed by 15% SDS-PAGE and the corresponding band was cut out from gel.The minced gel slice that contained the POZ domain protein was injected to immunize rabbits.The collected rabbit antiserum was purified using the saturated ammonium sulfate method in combination with protein G antibody purification,and the purified polyclonal antibodies was evaluated by Western blot.Results: The optimized sequence of the POZ domain was correctly obtained and successfully constructed into the pET-26b(+) vector.After induction,an expected protein band about 14 KD was detected on 15% SDS-PAGE,and highly purified polyclonal antibodies were obtained,which were specifically bound to human Zbtb7A.Conclusion: The obtained recombinant protein of the POZ domain and its polyclonal antibodies can be used for further studies of Zbtb7A.

SELECTION OF CITATIONS
SEARCH DETAIL