Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 3302-3317, 2023.
Article in Chinese | WPRIM | ID: wpr-1007959

ABSTRACT

L-methionine, also known as L-aminomethane, is one of the eight essential amino acids required by the human body and has important applications in the fields of feed, medicine, and food. In this study, an L-methionine high-yielding strain was constructed using a modular metabolic engineering strategy based on the M2 strain (Escherichia coli W3110 ΔIJAHFEBC/PAM) previously constructed in our laboratory. Firstly, the production of one-carbon module methyl donors was enhanced by overexpression of methylenetetrahydrofolate reductase (methylenetetrahydrofolate reductase, MetF) and screening of hydroxymethyltransferase (GlyA) from different sources, optimizing the one-carbon module. Subsequently, cysteamine lyase (hydroxymethyltransferase, MalY) and cysteine internal transporter gene (fliY) were overexpressed to improve the supply of L-homocysteine and L-cysteine, two precursors of the one-carbon module. The production of L-methionine in shake flask fermentation was increased from 2.8 g/L to 4.05 g/L, and up to 18.26 g/L in a 5 L fermenter. The results indicate that the one carbon module has a significant impact on the biosynthesis of L-methionine, and efficient biosynthesis of L-methionine can be achieved through optimizing the one carbon module. This study may facilitate further improvement of microbial fermentation production of L-methionine.


Subject(s)
Humans , Methionine , Methylenetetrahydrofolate Reductase (NADPH2) , Carbon , Cysteine , Escherichia coli/genetics , Hydroxymethyl and Formyl Transferases , Carrier Proteins , Escherichia coli Proteins
2.
Chinese Journal of Biotechnology ; (12): 4567-4586, 2022.
Article in Chinese | WPRIM | ID: wpr-970332

ABSTRACT

l-cysteine is an important sulfur-containing α-amino acid. It exhibits multiple physiological functions with diverse applications in pharmaceutical cosmetics and food industry. Here, a strategy of coordinated gene expression between carbon and sulfur modules in Escherichia coli was proposed and conducted for the production of l-cysteine. Initially, the titer of l-cysteine was improved to (0.38±0.02) g/L from zero by enhancing the biosynthesis of l-serine module (serAf, serB and serCCg) and overexpression of CysB. Then, promotion of l-cysteine transporter, increased assimilation of sulfur, reduction or deletion of l-cysteine and l-serine degradation pathway and enhanced expression of cysEf (encoding serine acetyltransferase) and cysBSt (encoding transcriptional dual regulator CysB) were achieved, resulting in an improved l-cysteine titer (3.82±0.01) g/L. Subsequently, expressions of cysM, nrdH, cysK and cysIJ genes that were involved in sulfur module were regulated synergistically with carbon module combined with utilization of sulfate and thiosulfate, resulting in a strain producing (4.17±0.07) g/L l-cysteine in flask shake and (11.94±0.1) g/L l-cysteine in 2 L bioreactor. Our results indicated that efficient biosynthesis of l-cysteine could be achieved by a proportional supply of sulfur and carbon in vivo. This study would facilitate the commercial bioproduction of l-cysteine.


Subject(s)
Escherichia coli/metabolism , Cysteine/metabolism , Bioreactors , Sulfur/metabolism , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL