Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Nutrition and Health ; : 319-326, 2015.
Article in Korean | WPRIM | ID: wpr-51984

ABSTRACT

PURPOSE: Borage oil (BO) and safflower oil (SO) are efficacious in reversing epidermal hyperproliferation, which is caused by the disruption of epidermal barrier. In this study, we compared the antiproliferative effect of dietary BO and SO. Altered metabolism of ceramide (Cer), the major lipid of epidermal barrier, was further determined by measurement of epidermal levels of individual Cer, glucosylceramide (GlcCer), and sphingomyelin (SM) species, and protein expression of Cer metabolizing enzymes. METHODS: Epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut diet (HCO) for 8 weeks. Subsequently, animals were fed diets of either BO (group HCO + BO) or SO (group HCO + SO) for 2 weeks. As controls, animals were fed BO (group BO) or HCO (group HCO) diets for 10 weeks. RESULTS: Epidermal hyperproliferation was reversed in groups HCO + BO (67.6% of group HCO) and HCO + SO (84.5% of group HCO). Epidermal levels of Cer1/2, GlcCer-A/B, and beta-glucocerebrosidase (GCase), an enzyme of GlcCer hydrolysis for Cer generation, were higher in group HCO + BO than in group HCO, and increased to levels similar to those of group BO. In addition, epidermal levels of SM1, serine palmitoyltransferase (SPT), and acidic sphingomyelinase (aSMase), enzymes of de novo Cer synthesis and SM hydrolysis for Cer generation, but not of Cer3-7, were higher in group HCO + BO than in group HCO. Despite an increase of SPT and aSMase in group HCO + SO to levels higher than in group HCO, epidermal levels of Cer1-7, GlcCer-A/B, and GCase were similar in these two groups. Notably, acidic ceramidase, an enzyme of Cer degradation, was highly expressed in group HCO + SO. Epidermal levels of GlcCer-C/D and SM-2/3 did not differ among groups. CONCLUSION: Dietary BO was more prominent for reversing epidermal hyperproliferation by enhancing Cer metabolism with increased levels of Cer1/2, GlcCer-A/B, and SM1 species, and of GCase proteins.


Subject(s)
Animals , Borago , Carthamus tinctorius , Ceramidases , Cocos , Diet , Epidermis , Glucosylceramidase , Guinea Pigs , Guinea , Hydrogen , Hydrolysis , Metabolism , Safflower Oil , Serine C-Palmitoyltransferase , Sphingomyelin Phosphodiesterase
2.
The Korean Journal of Nutrition ; : 819-827, 2003.
Article in Korean | WPRIM | ID: wpr-649446

ABSTRACT

Linoleic acid [LA; 18: 2 (n-6)] is the most abundant polyunsaturated fatty acid in human skin. The exclusion of LA from diet induces epidermal hyperproliferation, which is reversible by the inclusion of LA in diet, and hence, LA is heralded as an essential fatty acid (EFA). Since safflower oil (SO) has been widely recognized as the major dietary source of LA and Arctii Fructus (Arctium lappa L.) is recently reported to contain high level of LA, we compared the antiproliferative effects of SO and Arctii Fructus in this study. Epidermal hyperproliferation was induced in guinea pigs by hydrogenated coconut oil (HCO) diet for 8 wk. During following 2 wk, EFA deficient guinea pigs were fed diets of safflower oil (group HS), water extract of Arctii Fructus (group AW) or organic extract of Arctii Fructus (group AO). Normal control group was fed SO containing diet (group SO) and EFA deficient group was fed HCO containing diet (group HCO) for 10 wk. Epidermal hyperproliferation was reversed in groups AO (55.9% of group HCO) and HS(74.1% of group HCO). However, the thymidine incorporation into epidermal DNA of group HS was greater than of normal control group SO. Epidermal hyperproliferation was not reversed in group AW. The accumulations of LA into phospholipids and ceramides, and of 13-hydroxyoctadecadienoic acid (13-HODE), the potent antiproliferative metabolite of LA in the epidermis of group AO were greater than of group HS. In contrast, the de novo synthesis of ceramides, the major lipids maintaining epidermal barrier, did not differ between all of groups. Together, our data demonstrate that organic extract of Arctii Fructus is more prominent than safflower oil in reversing epidermal hyperproliferation by inducing the higher accumulations of LA and 13-HODE in the epidermis of guinea pigs.


Subject(s)
Animals , Humans , Ceramides , Cocos , Diet , DNA , Epidermis , Guinea Pigs , Guinea , Hydrogen , Linoleic Acid , Phospholipids , Safflower Oil , Skin , Thymidine , Water
SELECTION OF CITATIONS
SEARCH DETAIL