Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.478
Filter
1.
Acta Pharmaceutica Sinica ; (12): 608-615, 2024.
Article in Chinese | WPRIM | ID: wpr-1016633

ABSTRACT

Based on bone metastasis potential of mouse breast cancer 4T1 cells, the bone disseminated breast tumor cells 4T1 (B-4T1) were acquired through the screening of 6-mercaptopurine. The characteristics of B-4T1 were studied by morphological observation, proliferation assay, expression of epithelial and mesenchymal cell markers detection, transcriptome sequencing, and tumor formation experiments. The results showed that B-4T1 was round and spindle-shaped than primary 4T1 cells, and its proliferation rate was reduced, as well as epithelial cell adhesion molecule (EpCAM) and E-cadherin expression. The transcript level of N-cadherin was increased in the B-4T1, but not vimentin, indicating that B-4T1 had partial epithelial mesenchymal transition. Besides, B-4T1 had higher fatty acid metabolism and better tumor formation capacity. This study lays the experimental foundation for the basic study of metastasis in breast cancer. All animal experiments in this paper were conducted in accordance with the standards of the Animal Ethics Committee of China Pharmaceutical University.

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 359-366, 2024.
Article in Chinese | WPRIM | ID: wpr-1016558

ABSTRACT

Objective@#To investigate the value of the peripheral blood neutrophil to lymphocyte ratio (NLR) before nimotuzumab combined with neoadjuvant chemotherapy in predicting the short-term efficacy of neoadjuvant therapy for advanced oral squamous cell carcinoma (OSCC).@*Methods@#With the approval of the Ethics Committee and the informed consent of the patients, 59 patients with stage Ⅲ and Ⅳ OSCC who were admitted to the Oral and Maxillofacial Surgery Department of the First Hospital of Shanxi Medical University from September 2020 to June 2023 were enrolled. All the patients had complete clinical data, were pathologically diagnosed with squamous cell carcinoma, and received preoperative and received preoperative nimotuzumab + TP (docetaxel + cisplatin) neoadjuvant chemotherapy. The clinical data were analyzed, and the neutrophil and lymphocyte counts in peripheral blood were collected before and after nimotuzumab combined with neoadjuvant chemotherapy. The NLR was calculated, and the threshold value was calculated using the receiver operating characteristic (ROC) curve. Patients were divided into a high NLR group and a low NLR group according to the NLR threshold before nimotuzumab combined with neoadjuvant chemotherapy with TP. The clinical efficacy after nimotuzumab combined with neoadjuvant chemotherapy with TP was evaluated according to the evaluation criteria for solid tumor efficacy, and the correlation between the NLR and recent neoadjuvant therapy efficacy was analyzed. Immunohistochemical staining was used to detect the expression of epidermal growth factor receptor (EGFR) in OSCC tissues before and after nimotuzumab combined with neoadjuvant chemotherapy with TP and to analyze whether the expression of EGFR differed among the different NLR groups.@*Results@#A total of 59 patients with advanced OSCC were included. According to the ROC curve, the NLR threshold was 2.377, and the patients were divided into a <2.377 group (low NLR group), with 24 patients, and a>2.377 group (high NLR group), with 35 patients. The short-term neoadjuvant therapy effect was significantly greater in the lower NLR group than in the higher NLR group (P<0.05); EGFR expression in both the low NLR group and the high NLR group decreased after nimotuzumab combined with neoadjuvant chemotherapy with TP, and the decrease in the low NLR group was significantly greater than that in the high NLR group (P<0.05).@*Conclusion@#A low NLR before nimotuzumab combined with neoadjuvant chemotherapy with TP is associated with better neoadjuvant therapy outcomes, and such patients are more likely to benefit from preoperative nimotuzumab combined with neoadjuvant chemotherapy.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 280-289, 2024.
Article in Chinese | WPRIM | ID: wpr-1016488

ABSTRACT

Idiopathic pulmonary fibrosis (IPF), as a progressive lung disease, has a poor prognosis and no reliable and effective therapies. IPF is mainly treated by organ transplantation and administration of chemical drugs, which are ineffective and induce side effects, failing to meet the clinical needs. Therefore, developing safer and more effective drugs has become an urgent task, which necessitates clear understanding of the pathogenesis of IPF. The available studies about the pathogenesis of IPF mainly focus on macrophage polarization, epithelial-mesenchymal transition (EMT), oxidative stress, and autophagy, while few studies systematically explain the principles and links of the pathogeneses. According to the traditional Chinese medicine theory, Qi deficiency and blood stasis and Qi-Yang deficiency are the key pathogeneses of IPF. Therefore, the Chinese medicines or compound prescriptions with the effects of replenishing Qi and activating blood, warming Yang and tonifying Qi, and eliminating stasis and resolving phlegm are often used to treat IPF. Modern pharmacological studies have shown that such medicines play a positive role in inhibiting macrophage polarization, restoring redox balance, inhibiting EMT, and regulating cell autophagy. However, few studies report how Chinese medicines regulate the pathways in the treatment of IPF. By reviewing the latest articles in this field, we elaborate on the pathogenesis of IPF and provide a comprehensive overview of the mechanism of the active ingredients or compound prescriptions of Chinese medicines in regulating IPF. Combining the pathogenesis of IPF with the modulating effects of Chinese medicines, we focus on exploring systemic treatment options for IPF, with a view to providing new ideas for the in-depth study of IPF and the research and development of related drugs.

4.
Cancer Research on Prevention and Treatment ; (12): 191-194, 2024.
Article in Chinese | WPRIM | ID: wpr-1016396

ABSTRACT

Objective To analyze therapeutic effect of savolitinib in patients with stage Ⅲ/Ⅳ non-small cell lung cancer (NSCLC). Methods A total of 95 patients with MET 14 exon (METex14) jumping mutation in stage Ⅲ/Ⅳ NSCLC were divided into a control group (47 cases) and an observation group (48 cases) through a random-number table method. The patients in the control group were treated with crizotinib, whereas those in the observation group were treated with savolitinib. The clinical efficacy and incidence of toxic side effects in both groups were evaluated through a chi-square test, and survival was evaluated through Kaplan-Meier survival analysis. Results Compared with control group (31.91% and 70.21%), the objective response rate and disease control rate of the observation group were 52.08% and 87.50%, respectively (P<0.05). According to Kaplan-Meier survival analysis, the overall survival and progression free survival rates in the observation group were higher than those in the control group (Log rank χ2=8.003, 4.528; P=0.005, 0.033). No statistically significant difference in the degree of toxic side effects was found between the groups (P>0.05). Conclusion Savolitinib can improve the efficacy of treatment for stage Ⅲ/Ⅳ METex14 skip mutation NSCLC patients, prolong survival, enhance the tolerance of patients to savolitinib, and facilitate the management of adverse reactions.

5.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 348-353, 2024.
Article in Chinese | WPRIM | ID: wpr-1014546

ABSTRACT

Renal fibrosis, especially tubulointerstitial fibrosis, is the most common pathway of all chronic kidney diseases progressing to end-stage renal diseases. Several adaptive reactions occur in renal tubular epithelial cells after chronic injury, such as changes in glycolipid metabolism, unfolded protein response, autophagy and senescence, epithelial-to-mesenchymal transition and G2/M cell cycle arrest. Maladaptive repair mechanisms can induce tubulointerstitial fibrosis. This article will discuss the molecular mechanism of these adaptive responses of renal tubular epithelial cells driving renal tubulointerstitial fibrosis, and provide a basis for exploring new drug targets for renal tubulointerstitial fibrosis.

6.
Chinese Pharmacological Bulletin ; (12): 162-170, 2024.
Article in Chinese | WPRIM | ID: wpr-1013611

ABSTRACT

Aim To investigate the targeting mechanism of miR-23b on PINKl/Parkin pathway in transdifferentiation of NRK-52E cellsinduced by TGF-β1, and to elucidate the intervention mechanism of Qingshen granules drug-containing serum on NRK-52E cell transdifferentiation. Methods Ultra-high performance liquid chromatography ( UPLC ) fingerprinting method was used to analyze Qingshen granules. The NRK-52E transdifferentiation model induced by TGF-β1 was constructed. The NRK-52E cells were divided into simulated no-load control group, miR-23b-5p simulated group, inhibitor no-load control group, and miR-23b-5p inhibitor group, after transfection with siRNA, and the effect of miR-23b-5p on PINK1 expression was ob-served. The NRK-52E cells were then divided into normal group, TGF-(31 group, Qingshen granule group, miR-23 b-mimic group, miR-23 b-mimic group, and miR-23b-mimic + Qingshen granule group. Western blot was used to detect the expression of Pinkl, Parkin, LC3 n, Beclin-1, P62 and a-SMA proteins, and RT- PCR was used to detect the expression of miR-23 b-5p, Pinkl, Parkin, Beclin-1 and a-SMA mRNA in NRK- 52E cells. Dual-Luciferase Reporter gene experiment was used to detect the targeting relationship between miR-23b-5p and PINKL Results UPLC fingerprinting method found 11 active components in Qingshen granules. After overexpression of miR-23b-5p, the expression of PINkl mRNA significantly increased (P 0. 05 ). The experimental results showed that the expressions of miR- 23b-5p, Pinkl, Parkin, Beclin-1, LC3 II and LC3 II/ I ratio in TGF-β1 group were significantly lower than those in normal group, but the expressions of P62 and a-SMA were significantly higher than those in normal group ( P <0.05). The expressions of miR-23 b-5 p, Pinkl, Parkin, Beclin-1, LC3 II and LC3 11/ I ratio in Qingshen granule group and miR-23 b-mimic group were significantly higher than those in TGF-β1 group, and the expressions of P62 and a-SMA were significantly lower than those in TGF-β1 group (P < 0. 05 ). The performance of miR-23 b-mimic + Qingshen granule group was better than that of miR-23 b-mimic group (P < 0. 05 ). Conclusions Qingshen granules can up- regulate the expression of miR-23b-5p in NRK-52E cellsand inhibit the transdifferentiation process of NRK- 52E cells by enhancing the mitochondrial autophagy activity mediated by PINKl/Parkin pathway.

7.
Journal of Environmental and Occupational Medicine ; (12): 323-329, 2024.
Article in Chinese | WPRIM | ID: wpr-1013441

ABSTRACT

Background The active metabolite of benzo[a]pyrene (BaP), 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE), can form adducts with DNA, but the spectrum of BPDE-DNA adducts is unclear. Objective To identify the distribution of BPDE adduct sites and associated genes at the whole-genome level by chromatin immunoprecipitation followed by sequencing (ChIP-Seq), and serve as a basis for further exploring the toxicological mechanisms of BaP. Methods Human bronchial epithelial-like cells (16HBE) were cultured to the fourth generation inthe logarithmic growth phase. Cells were harvested and added to chromatin immunoprecipitation lysis buffer. The lysate was divided into experimental and control groups. The experimental group received a final concentration of 20 μmol·L−1 BPDE solution, while the control group received an equivalent volume of dimethyl sulfoxide solution. The cells were then incubated at 37 °C for 24 h. Chromatin fragments of 100-500 bp were obtained through sonication. BPDE-specific antibody (anti-BPDE 8E11) was used to enrich DNA fragments with BPDE adducts. High-throughput sequencing was conducted to detect BPDE adduct sites. The top 1000 peak sequences were subjected to motif analysis using MEME and DREME software. BPDE adduct target genes at the whole-genome level were annotated, and Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of BPDE adduct target genes were conducted using bioinformatics techniques. Results The high-throughput sequencing detected a total of 842 BPDE binding sites, distributed across various chromosomes. BPDE covalently bound to both coding and non-coding regions of genes, with 73.9% binding sites located in intergenic regions, 19.6% in intronic regions, and smaller proportions in upstream 2 kilobase, exonic, downstream 2 kilobase, and 5' untranslated regions. Regarding the top 1000 peak sequences, four reliable motifs were identified, revealing that sites rich in adenine (A) and guanine (G) were prone to binding. Through the enrichment analysis of binding sites, a total of 199 BPDE-adduct target genes were identified, with the majority located on chromosomes 1, 5, 7, 12, 17, and X. The GO analysis indicated that these target genes were mainly enriched in nucleic acid and protein binding, participating in the regulation of catalytic activity, transport activity, translation elongation factor activity, and playing important roles in cell division, differentiation, motility, substance transport, and information transfer. The KEGG analysis revealed that these target genes were primarily enriched in pathways related to cardiovascular diseases, cancer, and immune-inflammatory responses. Conclusion Using ChIP-Seq, 199 BPDE adduct target genes at genome-wide level are identified, impacting biological functions such as cell division, differentiation, motility, substance transport, and information transfer. These genes are closely associated with cardiovascular diseases, tumors, and immune-inflammatory responses.

8.
China Pharmacy ; (12): 701-706, 2024.
Article in Chinese | WPRIM | ID: wpr-1013105

ABSTRACT

OBJECTIVE To investigate the effects of polydatin (PD) on cell proliferation, migration, invasion and tumor growth of acute myeloid leukemia (AML). METHODS Human AML cell KG-1 were divided into normal group, PD low-, medium- and high-concentration groups (10, 30, 60 μmol/L PD), SQ22536 group [cyclic adenosine monophosphate (cAMP) inhibitor, 100 μmol/L], high concentration of PD+SQ22536 group (60 μmol/L PD+100 μmol/L SQ22536). The effects of PD on cell activity, apoptotic rate, invasion and migration ability, cAMP level, the expression of epithelial-mesenchymal transition (EMT) related proteins and protein kinase A (PKA) were investigated. Using BALB/c nude mice as subjects, a transplanted tumor model of AML nude mice was induced by subcutaneous inoculation of KG-1 cell suspension and then divided into control group, PD group, SQ22536 group and PD+SQ22536 group (with 6 mice in each group). The effects of PD on tumor volume and mass were measured. RESULTS Compared with the normal group or control group, the cell viabilities, the number of migrating cells, the number of invasive cells, the relative expressions of vimentin and Snail as well as the tumor volume and mass were decreased significantly in PD groups, while the apoptotic rates, cAMP levels, the relative expressions of E-cadherin and PKA were significantly increased, with a dose-dependent manner (P<0.05). SQ22536 had opposite effects on cells and nude mice compared to PD, and could significantly reverse the anti-tumor activity of PD (P<0.05). CONCLUSIONS PD may inhibit the proliferation, migration, invasion and EMT process of KG-1 cells, induce apoptosis, and inhibit tumor growth, by activating the cAMP/PKA signaling pathway, thereby exerting anti-AML effects.

9.
International Eye Science ; (12): 508-514, 2024.
Article in Chinese | WPRIM | ID: wpr-1012812

ABSTRACT

AIM: To investigate the effect of inhibiting Ca2+/calmodulin-dependent protein kinase Ⅱ(CAMKⅡ)expression in adult retinal pigment epithelial cell line-19(ARPE-19)cells on the migration, invasion, and tube formation of human umbilical vein endothelial cells(HUVECs)in a non-contact co-culture system.METHODS: RNA sequencing was performed on ARPE-19 cells overexpressing CAMKⅡ-δ, and bioinformatics was used to analyze the biological functions of the differentially expressed genes. Transwell inserts was used to construct a non-contact co-culture system of ARPE-19 and HUVECs. The experimental groups included: blank group: only HUVECs were inoculated without ARPE-19 cells; control group: ARPE-19 and HUVECs cells were co-cultured with complete medium; AIP group(CAMKⅡ inhibition group): ARPE-19 cells in AIP(160 nmol/L)were co-cultured with HUVECs in complete medium. The migration, invasion and tube formation abilities of HUVECs were detected. The protein expression levels of CAMKⅡ/AMPK/mTOR/VEGFA were detected by Western blotting.RESULTS:Bioinformatics analysis found that the differentially expressed genes could affect biological processes such as cell growth and death and cell movement. The scratch test and transwell migration test showed that the relative mobility of HUVECs in the AIP group was significantly lower than that in the control group(all P&#x003C;0.05). However, the invasion and tube formation assay showed that the relative invasion rate and tube formation rate of the AIP group were not significantly different from those of the control group(both P&#x003E;0.05). Western blotting results showed that the expression levels of CAMKⅡ, P-mTOR, and VEGFA proteins in the AIP group were significantly lower than those in the control group, while the expression level of the P-AMPK protein was significantly higher than that in the control group(all P&#x003C;0.05).CONCLUSION:In the non-contact co-culture system, inhibition of CAMKⅡ expression in ARPE-19 cells significantly reduced the migration ability of HUVECs, but it cannot change the invasion and tube formation ability, which may be achieved by AMPK/mTOR/VEGFA.

10.
Chinese Journal of Radiological Health ; (6): 21-27, 2024.
Article in Chinese | WPRIM | ID: wpr-1012765

ABSTRACT

Objective To investigate the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) for radiation-induced lung injury (RILI) and the underlying mechanism. Methods Forty-five healthy adult male C57BL/6 mice were randomly divided into control, model, and BMSCs groups. The model and BMSCs groups received a single irradiation dose of 20 Gy to the chest, while the control group did not receive X-ray irradiation. For the BMSCs group, an injection of 1 × 106 BMSCs cells was administered via the tail vein within 6 h after irradiation. In the 5th week, the lung tissue was taken to observe pathological changes with HE staining; examine the expression of the inflammatory factors interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) with immunohistochemical staining; observe the polarization of macrophages with immunofluorescence staining; and measure the expression of the epithelial-mesenchymal transition markers E-cadherin, N-cadherin, and vimentin proteins by Western blot. Results After radiation, the model group developed pulmonary vasodilation and congestion with septal thickening and inflammatory cell infiltration, and these changes were markedly reduced in the BMSCs group. The model group showed significantly down-regulated expression of IL-6 and TNF-α compared with significantly increased levels in the model group (P < 0.01, P < 0.05). Treatment with BMSCs significantly increased the polarization of lung macrophages towards the M2 type, while significantly decreasing the abnormally increased N-cadherin and vimentin levels in RILI mice (P < 0.05, P < 0.01). Conclusion BMSCs have therapeutic effects for RILI mice, which may be through promoting macrophage polarization from M1 to M2.

11.
Cancer Research on Prevention and Treatment ; (12): 85-90, 2024.
Article in Chinese | WPRIM | ID: wpr-1011503

ABSTRACT

Objective To investigate the effects of TFF3 overexpression on the proliferation, migration, and invasion ability of colorectal cancer HT29 cells and the mechanisms involved in cancer metastasis. Methods HT29 cells were transfected with pIRES2-TFF3, and the expression levels of mRNAs and proteins related to TFF3 gene, TWIST1/TRIB3 signaling pathway, and epithelial-mesenchymal transition (EMT) were detected by qRT-PCR and Western blot. The proliferation, migration, and invasion ability of HT29 cells were detected by the CCK-8, cell scratch, and Transwell assays. Changes in cell morphology after TFF3 overexpression were observed through transmission electron microscopy. Results After the HT29 cells were transfected with pIRES2-TFF3, the expression levels of TFF3 mRNA and protein significantly increased (P<0.01); cell proliferation, migration, and invasion were significantly enhanced (P<0.01); and the expression of related genes, such as TWIST1, TRIB3, Vimentin, and Snail were significantly upregulated. By contrast, the expression of E-cadherin significantly decreased (P<0.05). Various changes in cell morphology were observed after TFF3 overexpression, such as decrease in cell junctions, loss of cilia, formation of pseudopodia, and increase in fusiform cells. Conclusion TFF3 overexpression may promote EMT in colorectal cancer cells through the Twist1/TRIB3 signaling pathway, increase their metastatic potential, and accelerate the malignant progression of colorectal cancer.

12.
Acta Pharmaceutica Sinica B ; (6): 682-697, 2024.
Article in English | WPRIM | ID: wpr-1011251

ABSTRACT

Lymphatic metastasis is the main metastatic route for colorectal cancer, which increases the risk of cancer recurrence and distant metastasis. The properties of the lymph node metastatic colorectal cancer (LNM-CRC) cells are poorly understood, and effective therapies are still lacking. Here, we found that hypoxia-induced fibroblast activation protein alpha (FAPα) expression in LNM-CRC cells. Gain- or loss-function experiments demonstrated that FAPα enhanced tumor cell migration, invasion, epithelial-mesenchymal transition, stemness, and lymphangiogenesis via activation of the STAT3 pathway. In addition, FAPα in tumor cells induced extracellular matrix remodeling and established an immunosuppressive environment via recruiting regulatory T cells, to promote colorectal cancer lymph node metastasis (CRCLNM). Z-GP-DAVLBH, a FAPα-activated prodrug, inhibited CRCLNM by targeting FAPα-positive LNM-CRC cells. Our study highlights the role of FAPα in tumor cells in CRCLNM and provides a potential therapeutic target and promising strategy for CRCLNM.

13.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 76-84, 2024.
Article in Chinese | WPRIM | ID: wpr-1007277

ABSTRACT

ObjectiveTo investigate the effect of Dendrobium officinale polysaccharide (DOP)on CCl4-induced hepatic fibrosis(HF)and its mechanism. MethodsA total of 56 male SD rats were randomly divided into seven groups: normal group(NG),model group(MG),colchicine group(CG, 0.1 mg/kg), Fuzheng Huayu group(FG, 0.45 g/kg),low-dose DOP group(LDG, 0.05 g/kg),middle-dose DOP group(MDG, 0.1 g/kg)and high-dose DOP group(HDG,0.2 g/kg),with 8 rats in each group. HF rat model was established by subcutaneous injection with 40% CCl4 olive oil mixture, every 3-day for 10 weeks. At the end of the sixth week, the drug groups were treated with colchicine, Fuzheng Huayu and DOP solution by gavage respectively, once a day for 4 weeks. NG and MG groups were similarly handled with an equal amount of 0.9 % normal saline. Liver histopathology was detected using hematoxylin-eosin (HE), Masson and Sirius red staining; blood biochemistry was tested for liver function and four indicators of HF; RT-qPCR and Western Blot were used to measure the expression of α-SMA, Col-I, E-cadherin, and ZEB1 genes and proteins in the liver tissues of rats, respectively. ResultsHE, Masson, and Sirius red staining showed that the liver tissue of MG rats had typical pathologic features of HF, and the degree of HF was alleviated in LDG, MDG, and HDG rats, respectively. Liver function test results showed that the serum AST, TBIL, and AKP levels were significantly lower in LDG, MDG, and HDG, compared with those of the MG (P < 0.05 or < 0.01). Meanwhile, ALT levels in serum deceased remarkably except in LDG (P < 0.05 or < 0.01). The four results of HF showed that the serum HA, LN, PC-Ⅲ, and COL-Ⅳ levels in LDG, MDG, and HDG rats were significantly decreased compared with those of the MG (P < 0.05 or < 0.01). The relative expressions of α-SMA, COL-I, and ZEB1 genes and proteins were significantly decreased in the liver tissues of LDG, MDG, and HDG (P < 0.05 or < 0.01), and the relative expression of E-cadherin gene and protein increased (P < 0.05 or < 0.01). In addition, the expressions of HA, α-SMA, COL-I, ZEB1 and E-cadherin were dependent on the dose of DOP. ConclusionDOP alleviated the degree of CCl4 induced HF in rats by inhibiting the epithelial-mesenchymal transition in liver tissue.

14.
Cancer Research on Prevention and Treatment ; (12): 43-48, 2024.
Article in Chinese | WPRIM | ID: wpr-1007227

ABSTRACT

Objective To investigate the correlation of Wnt5a expression and vasculogenic mimicry (VM) in prostate cancer tissues, and analyze their relationships with cancer stem cells (CSCs) characteristics and epithelial–mesenchymal transition (EMT). Methods Immunohistochemistry was conducted to detect the expression of Wnt5a in 50 prostate cancer tissues and 50 benign prostatic hyperplasia tissues. The expression levels of CD133, vimentin, and E-cadherin were detected in the prostate cancer tissues, and CD34/PAS double staining was used to detect VM structures. We analyzed the difference in Wnt5a level between prostate cancer and benign prostatic hyperplasia tissues, the clinical significance of Wnt5a and VM, the relationship of Wnt5a expression and VM, and the relationships of Wnt5a expression and VM with CD133, Vimentin, E-cadherin. Results The expression of Wnt5a was significantly higher in prostate cancer tissues than in benign prostatic hyperplasia (P < 0.05). A positive correlation was observed between Wnt5a expression and VM (P < 0.05). The expression levels of Wnt5a and VM were positively correlated with those of CD133 and vimentin (P < 0.05). Wnt5a expression and VM were positively correlated with Gleason score, vas deferens invasion and lymphatic metastasis (P < 0.05) of prostate cancer, and VM was also positively correlated with T stage of prostate cancer (P < 0.05). Conclusion The expression level of Wnt5a in prostate cancer tissues is elevated and positively related with VM formation. Wnt5a expression and VM are correlated with cancer stem cells characteristics and the expression of epithelial–mesenchymal transition marker proteins.

15.
China Pharmacy ; (12): 192-197, 2024.
Article in Chinese | WPRIM | ID: wpr-1006177

ABSTRACT

OBJECTIVE To investigate the effects of anlotinib on the malignant phenotype of glioma cells by regulating the nuclear factor-κB (NF-κB) signaling pathway. METHODS Human glioma T98G cells were cultured in vitro, and 5-fluorouracil was used as positive control to investigate the effects of different concentrations of anlotinib (5, 10, 20 μmol/L) on the ability of proliferation, adhesion, migration and invasion, the expressions of epithelial-mesenchymal transition (EMT) related proteins [E-cadherin, N-cadherin, vimentin and fibronectin (FN)]. NF- κB signaling pathway inhibitor (BAY 11-7082) and activator (prostratin) were additionally used to verify the possible mechanism of the above effects of anlotinib. RESULTS Anlotinib with 5, 10, 20 μmol/L could significantly decrease the activity of cell proliferation (except for 5 μmol/L anlotinib group), migration rate, and the number of adherent cells and invasive cells, could significantly up-regulate the expression of E-cadherin protein while down-regulate the expressions of N-cadherin, vimentin and FN protein (P<0.05); the effect of 20 μmol/L anlotinib was similar to that of positive control (P>0.05). Compared with 10 μmol/L anlotinib, pathway inhibitor could significantly decrease the ability of proliferation, adhesion, migration and invasion, and the expressions of N-cadherin, vimentin, FN and phosphorylated NF-κB p65 protein, while could significantly up-regulate the expression of E-cadherin protein (P<0.05); above indexes were reversed significantly by pathway activator (P<0.05). CONCLUSIONS Anlotinib may inhibit the proliferation, adhesion, migration and invasion of human glioma T98G cells, which may be associated with the inhibition of the NF-κB signaling pathway, thus inhibiting cell EMT-like processes.

16.
International Eye Science ; (12): 67-71, 2024.
Article in Chinese | WPRIM | ID: wpr-1003508

ABSTRACT

Neurotrophic keratitis(NK)is a degenerative corneal disease caused by impairment of trigeminal innervations. It can lead to spontaneous corneal epithelial defects, corneal ulceration and perforation. Early diagnosis of NK is crucial and requires accurate investigation of clinical history and thorough examination of ocular surface to determine clinical stage. Treatment for NK needs to be divided into stages according to disease severity. In addition to conventional treatments including artificial tears, blepharorrhaphy, and amniotic membrane transplantation, there are also emerging treatments such as targeted drug therapy and corneal neurotization. This article summarized the epidemiology, clinical manifestations and classification, etiology, diagnosis, differential diagnosis and treatment of NK, aiming to provide reference for the early diagnosis and treatment of NK in the future.

17.
International Eye Science ; (12): 30-35, 2024.
Article in Chinese | WPRIM | ID: wpr-1003501

ABSTRACT

AIM: To investigate the potential of human induced pluripotent stem cells(hiPSCs)differentiating into corneal epithelial cells in the simulated limbal stem cells(LSCs)microenvironment.METHODS: The hiPSC cell lines were established in vitro, and hiPSCs were co-cultured with corneal stromal cells in transwell system, which simulated the LSC microenvironment. Bone morphogenetic protein 4(BMP4)and a specific transforming growth factor β inhibitor(SB431542)were added to improve the differentiation efficacy. The expression of corneal epithelial cell-specific markers CK3 and CK12, corneal epithelial cell precursor CK15, and the limbal stem cell markers ABCG5 were determined by immunofluorescence staining and flow cytometry.RESULTS: The hiPSCs were actively proliferated in vitro, and immunofluorescence staining showed positive stem cell-specific markers OCT4, SOX2, TRA-1-60 and NANOG. Furthermore, hiPSCs co-cultured with corneal stromal cells exhibited LSCs markers ABCG5 and corneal epithelial cell precursor markers CK15 were positive; however, corneal epithelial cell markers CK3 and CK12 were negative. With the addition of BMP4 and SB431542, hiPSCs showed positive expression of CK3, and the CK3 expression increased over the time.CONCLUSION: With the addition of SB431542 and BMP4, hiPSCs cultured in simulated LSCs microenvironment could differentiate into corneal epithelial cells.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 56-63, 2024.
Article in Chinese | WPRIM | ID: wpr-1003408

ABSTRACT

ObjectiveBy observing the effect of Qianyang Yuyin granules on the phenotype of renal tubule epithelial cells, the intervention of Qianyang Yuyin granule on renal interstitial fibrosis was investigated. MethodThe renal tubular epithelial cells (HK-2) were treated with different concentrations of transforming growth factor (TGF)-β1 (5, 10, 15, 20, 25 μg·L-1) for 24 hours, and cell morphology and growth state were observed with an inverted phase contrast microscope. The 20 μg·L-1 was selected as the most appropriate concentration of TGF-β1 according to Western blot results for subsequent experiments. HK-2 cells were divided into six groups: blank group, TGF-β1 group (concentration of 20 μg·L-1), low, medium, and high dose Qianyang Yuyin granule groups (concentration of 0.5, 1, 2 g·L-1), and valsartan group (1 × 10-5 mol·L-1). The cell activity was measured by cell proliferation and cell counting kit-8 (CCK-8). The cell migration ability was detected by scratch test. The Transwell method was used to detect the invasiveness of cells. Western blot was used to detect levels of fibronectin (FN), E-cadherin, α-smooth muscle activator (α-SMA), Vimentin, collagen type Ⅰ(Col Ⅰ), collagen type Ⅳ(Col Ⅳ), and other related proteins. ResultTGF-β1 stimulating epithelial-mesenchymal transition (EMT) in renal tubular epithelial cells was time- and concentration-dependent. Compared with the blank group, higher concentration in the TGF-β1 group indicates longer intervention time and more obvious long spindle change of cells, and the migration and invasion ability of the cells was significantly enhanced. The protein expression level of FN, α-SMA, Vimentin, Col Ⅰ, and Col Ⅳ increased significantly (P<0.05, P<0.01), while the expression level of E-cadherin protein decreased (P<0.05). Compared with the TGF-β1 group, Qianyang Yuyin granule groups could maintain normal cell morphology, and the migration and invasion ability of the cells was inhibited. The protein expression level of FN, α-SMA, Vimentin, Col Ⅰ, and Col Ⅳ decreased (P<0.05, P<0.01), and the expression of E-cadherin protein was significantly restored (P<0.05). ConclusionQianyang Yuyin granule can reverse TGF-β1-induced interstitial transformation of renal tubular epithelial cells by reducing the phenotypic expression of mesenchymal cells and increasing the phenotypic expression of epithelial cells.

19.
Biol. Res ; 57: 2-2, 2024. ilus, graf
Article in English | LILACS | ID: biblio-1550057

ABSTRACT

BACKGROUND: Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS: Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-ß, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS: Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.


Subject(s)
Humans , Interferon Type I , alpha-Synuclein , SARS-CoV-2 , COVID-19 , Virus Replication , Cell Line , Endothelial Cells
20.
Braz. j. otorhinolaryngol. (Impr.) ; 90(1): 101358, 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1534080

ABSTRACT

Abstract Objectives Nasopharyngeal carcinoma (NPC) is an aggressive epithelial cancer. The expression of miR-186 is decreased in a variety of malignancies and can promote the invasion and metastasis of cancer cells. This study aimed to explore the role and possible mechanism of miR-186 in the metastasis and epithelial-mesenchymal transformation (EMT) of NPC. Methods The expression of miR-186 in NPC tissues and cells was detected by RT-PCR. Then, miR-186 mimic was used to transfect NPC cell lines C666-1 and CNE-2, and cell activity, invasion and migration were detected by CCK8, transwell and scratch assay, respectively. The expression of EMT-related proteins was analyzed by western blotting analysis. The binding relationship between miR-186 and target gene Zinc Finger E-Box Binding Homeobox 1 (ZEB1) was confirmed by double luciferase assay. Results The expression of miR-186 in NPC was significantly decreased, and transfection of miR-186 mimic could significantly inhibit the cell activity, invasion, and migration, and regulate the protein expressions of E-cadherin, N-cadherin and vimentin in C666-1 and CNE-2 cells. Further experiments confirmed that miR-186 could directly target ZEB1 and negatively regulate its expression. In addition, ZEB1 has been confirmed to be highly expressed in NPC, and inhibition of ZEB1 could inhibit the activity, invasion, metastasis and EMT of NPC cells. And co-transfection of miR-186 mimic and si-ZEB1 could further inhibit the proliferation and metastasis of NPC. Conclusion miR-186 may inhibit the proliferation, metastasis and EMT of NPC by targeting ZEB1, and the miR-186/ZEB1 axis plays an important role in NPC.

SELECTION OF CITATIONS
SEARCH DETAIL