Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 983
Filter
1.
International Eye Science ; (12): 30-35, 2024.
Article in Chinese | WPRIM | ID: wpr-1003501

ABSTRACT

AIM: To investigate the potential of human induced pluripotent stem cells(hiPSCs)differentiating into corneal epithelial cells in the simulated limbal stem cells(LSCs)microenvironment.METHODS: The hiPSC cell lines were established in vitro, and hiPSCs were co-cultured with corneal stromal cells in transwell system, which simulated the LSC microenvironment. Bone morphogenetic protein 4(BMP4)and a specific transforming growth factor β inhibitor(SB431542)were added to improve the differentiation efficacy. The expression of corneal epithelial cell-specific markers CK3 and CK12, corneal epithelial cell precursor CK15, and the limbal stem cell markers ABCG5 were determined by immunofluorescence staining and flow cytometry.RESULTS: The hiPSCs were actively proliferated in vitro, and immunofluorescence staining showed positive stem cell-specific markers OCT4, SOX2, TRA-1-60 and NANOG. Furthermore, hiPSCs co-cultured with corneal stromal cells exhibited LSCs markers ABCG5 and corneal epithelial cell precursor markers CK15 were positive; however, corneal epithelial cell markers CK3 and CK12 were negative. With the addition of BMP4 and SB431542, hiPSCs showed positive expression of CK3, and the CK3 expression increased over the time.CONCLUSION: With the addition of SB431542 and BMP4, hiPSCs cultured in simulated LSCs microenvironment could differentiate into corneal epithelial cells.

2.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 348-353, 2024.
Article in Chinese | WPRIM | ID: wpr-1014546

ABSTRACT

Renal fibrosis, especially tubulointerstitial fibrosis, is the most common pathway of all chronic kidney diseases progressing to end-stage renal diseases. Several adaptive reactions occur in renal tubular epithelial cells after chronic injury, such as changes in glycolipid metabolism, unfolded protein response, autophagy and senescence, epithelial-to-mesenchymal transition and G2/M cell cycle arrest. Maladaptive repair mechanisms can induce tubulointerstitial fibrosis. This article will discuss the molecular mechanism of these adaptive responses of renal tubular epithelial cells driving renal tubulointerstitial fibrosis, and provide a basis for exploring new drug targets for renal tubulointerstitial fibrosis.

3.
Arq. bras. oftalmol ; 87(2): e2022, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1557082

ABSTRACT

ABSTRACT Purposes: To determine the best protocol in obtaining the higher yield of conditioned culture medium to be used for the bone marrow mesenchymal stem cell differentiation into corneal epithelial cells, five techniques for the primary culture of human corneal epithelial cells were evaluated. Methods: The studied culture techniques of corneal epithelial cells were: explants in culture flasks with and without hydrophilic surface treatment, on amniotic membrane, with enzymatic digestion, and by corneal scraping. The conditioned culture medium collected from these cultures was used to differentiate human bone marrow mesenchymal stem cells into corneal epithelial cells, which were characterized using flow cytometry with pan-cytokeratin and the corneal-specific markers, cytokeratin 3 and cytokeratin 12. Results: The culture technique using flasks with hydrophilic surface treatment resulted in the highest yield of conditioned culture medium. Flasks without surface treatment resulted to a very low success rate. Enzymatic digestion and corneal scraping showed contamination with corneal fibroblasts. The culture on amniotic membranes only allowed the collection of culture medium during the 1st cell confluence. The effectiveness of cell differentiation was confirmed by cytometry analysis using the collected conditioned culture medium, as demonstrated by the expressions of cytokeratin 3 (95.3%), cytokeratin 12 (93.4%), and pan-cytokeratin (95.3%). Conclusion: The culture of corneal epithelial cell explants in flasks with hydrophilic surface treatment is the best technique for collecting a higher yield of conditioned culture medium to be used to differentiate mesenchymal stem cells.


RESUMO Objetivos: Foram estudadas cinco técnicas de cultivo primário de células epiteliais de córnea humana para se determinar o melhor protocolo para a obtenção do maior rendimento de meio de cultivo condicionado para ser utilizado na diferenciação de células tronco mesenquimais para células epiteliais de córnea. Métodos: As técnicas de cultivo estudadas foram: explantes em frascos de cultivo com e sem tratamento hidrofílico de superfície, sobre membrana amniótica, com digestão enzimática e por raspado de córnea. O meio de cultivo condicionado foi coletado e as células tronco mesenquimais induzidas a se diferenciarem em células epiteliais da córnea utilizando o meio de cultivo condicionado. As células foram caracterizadas por citometria de fluxo com pan-citoqueratina e com os marcadores específicos da córnea, citoqueratina 3 e citoqueratina 12. Resultados: A técnica utilizando frascos com o tratamento de superfície apresentou o maior rendimento de meio de cultivo condicionado. Os frascos sem tratamento de superfície levaram a uma taxa de sucesso muito baixa. A digestão enzimática e a raspagem da córnea mostraram contaminação das culturas com fibroblastos de córnea. A cultura sobre membranas amnióticas só permitiu a coleta do meio de cultivo condicionado durante a 1ª confluência celular. A análise de citometria de fluxo confirmou o sucesso da diferenciação celular utilizando o meio de cultivo condicionado coletado, demonstrada pela expressão de citoqueratina 3 (95,3%), citoqueratina 12 (93,4%) e pan-citoqueratina (95,3%). Conclusão: O cultivo de explantes de células tronco mesenquimais em frascos com tratamento hidrofílico de superfície é a melhor técnica para a obtenção de um alto rendimento de meio de cultivo condicionado.

4.
Indian J Pathol Microbiol ; 2023 Sept; 66(3): 526-532
Article | IMSEAR | ID: sea-223471

ABSTRACT

Introduction: Minimal change nephrotic syndrome (MCNS) and focal segmental glomerulosclerosis (FSGS) are the two common causes of nephrotic syndrome (NS) in both children and adults with overlapping clinical features, but with distinct prognostic and therapeutic implications. The distinction between these relies entirely on histopathology, which can sometimes be difficult. CD44 is expressed by activated parietal epithelial cells, plays a role in matrix deposition and thus in the pathogenesis of FSGS. Aims: To assess the expression of CD44 in MCNS and FSGS and to evaluate its association with the known clinical and histopathological prognostic factors. Materials and Methods: Thirty cases each of MCNS and FSGS were studied. The clinical, laboratory, histopathological, and CD 44 immunohistochemical data were recorded. The findings were analyzed and correlated. A P value of < 0.05 was considered statistically significant. Results: Statistical association was noted between CD44 positivity and serum creatinine (p = 0.031), estimated glomerular filtration rate (p = 0.040), segmental sclerosis (p < 0.001), tubular atrophy (p = 0.027), interstitial fibrosis (p = 0.027), and histological diagnosis (p < 0.001). The sensitivity, specificity, positive predictive, and negative predictive values were 90%, 76.67%, 79.41% and 88.46%, respectively. Conclusions: CD44 immunostain can effectively distinguish MCNS from FSGS. The congruent results of CD44 positivity with known prognostic factors support the possibility of using the CD44 marker as a predictive tool in selecting high-risk patients and offering appropriate therapeutic measures.

5.
Braz. j. otorhinolaryngol. (Impr.) ; 89(3): 393-400, May-June 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447700

ABSTRACT

Abstract Objectives We aimed to explore the heterogeneity and differentiation trajectories of epithelial cells and NK/T-cells in Laryngeal Squamous Cell Carcinoma (LSCC). Methods We downloaded the GSE150321 data set containing LSCC01 and LSCC02 samples single cell RNA data from Gene Expression Omnibus. The UMAP analysis was performed to identify the cell subpopulations and cell locations of subpopulations. Seurat package was used to analyze the differential expression of genes. The function of differential expression genes was analyzed using DAVID database. The monocle2 package was used to analyze differentiation trajectories. We used the CellChat package to observe the signaling pathways and ligand-receptor pairs for epithelial cells and NK/T-cells. Results All the LSCC cells were divided into 16 subpopulation that included 7 epithelial cell subsets, 3 T-cell subsets. The function analysis indicated that epithelial cells and NK/T-cells mainly participated in different process, such as cell cycle, immune response, and cell migration. Then, the results of differentiation trajectory indicated that the ability of migration, and the activation of the immune system increases, while the ability of apoptosis, and glucose metabolic process decreases as pseudotime. Migration-related epithelial cells act on all T-cells via the CNTN2-CNTN2 ligand-receptor pair, which suggested that CNTN2 might be an important biomarker for regulating migration of epithelial cells. Conclusions Our study characterized the heterogeneity of LSCC, which provided novel insights into LSCC and identified a new mechanism and target for clinical LSCC threapies. Evidence IV.

6.
Rev. bras. cir. cardiovasc ; 38(1): 79-87, Jan.-Feb. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1423099

ABSTRACT

ABSTRACT Objective: To explore the effect of ischemic postconditioning on myocardial ischemia-reperfusion-induced acute lung injury (ALI). Methods: Forty adult male C57BL/6 mice were randomly divided into sham operation group (SO group), myocardial ischemia-reperfusion group (IR group), ischemic preconditioning group (IPRE group) and ischemic postconditioning group (IPOST group) (10 mice in each group). Anterior descending coronary artery was blocked for 60 min and then reperfused for 15 min to induce myocardial IR. For the IPRE group, 3 consecutive cycles of 5 min of occlusion and 5 minutes of reperfusion of the coronary arteries were performed before ischemia. For the IPOST group, 3 consecutive cycles of 5 min reperfusion and 5 minutes of occlusion of the coronary arteries were performed before reperfusion. Pathological changes of lung tissue, lung wet-to-dry (W/D) weight ratio, inflammatory factors, oxidative stress indicators, apoptosis of lung cells and endoplasmic reticulum stress (ERS) protein were used to evaluate lung injury. Results: After myocardial IR, lung injury worsened significantly, manifested by alveolar congestion, hemorrhage, structural destruction of alveolar septal thickening, and interstitial neutrophil infiltration. In addition, lung W/D ratio was increased, plasma inflammatory factors, including interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-17A, were increased, malondialdehyde (MDA) activity of lung tissue was increased, and superoxide dismutase (SOD) activity was decreased after myocardial IR. It was accompanied by the increased protein expression levels of ERS-related protein glucose regulatory protein 78 (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), and caspase-12, and the increased apoptotic indices of lung tissues. Conclusion: IPOST can effectively improve myocardial IR-induced ALI by inhibiting ERS-induced apoptosis of alveolar epithelial cells.

7.
International Eye Science ; (12): 551-556, 2023.
Article in Chinese | WPRIM | ID: wpr-965775

ABSTRACT

AIM: To investigate the changes of protein expressions in human lens epithelial cells(SRA01/04)undergoing oxidative damage, hoping to provide new protein target for the pathogenesis of age-related cataract(ARC).METHODS: SRA01/04 cells were divided into experimental group and control group. In the experimental group, cells were irradiated with ultraviolet-B(UVB)for 10min to establish the model of oxidative damage, whereas cells in the control group were untreated. Protein expression profile from the two groups was sequenced by isobaric tags for relative and absolute quantitation(iTRAQ). The filtering criteria that fold change &#x0026;#x003E;1.2 and p&#x0026;#x003C;0.05 was used to determine the differentially expressed proteins(DEPs). Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)database were utilized for functional enrichment analysis of the top 50 DEPs with either up-regulated or down-regulated significance. Furthermore, Pathway commons software was used to establish the protein-protein interaction(PPI)network.RESULTS: Overall, 552 DEPs were screened out. A total of 176 DEPs were up-regulated in the experimental group compared with the control group, including HMGB1 and USP1, while 376 DEPs were down-regulated, including POLR2A and POLR2B. GO and KEGG enrichment analysis indicated that the top 50 DEPs with up-regulated or down-regulated significance were involved in various crucial biological processes and signaling pathways. PPI network revealed that oxidative damage repair(ODR)-related proteins might play a key role in UVB-induced oxidative damage.CONCLUSIONS: The expressions of multiple proteins, especially ODR-related proteins, can be altered in SRA01/04 cells via UVB irradiation. These findings may provide cellular-related insights into the pathogenesis of ARC and into proteins or pathways associated with therapeutic targets.

8.
Chinese Journal of Lung Cancer ; (12): 732-740, 2023.
Article in Chinese | WPRIM | ID: wpr-1010081

ABSTRACT

BACKGROUND@#Currently, a significant number of miners are involved in mining operations at the Gejiu tin mine in Yunnan. This occupational setting is associated with exposure to dust particles, heavy metals, polycyclic aromatic hydrocarbons, and radioactive radon, thereby significantly elevating the risk of lung cancer. This study aims to investigate the involvement of leptin-mediated extracellular regulated protein kinase (ERK) signaling pathway in the malignant transformation of rat alveolar type II epithelial cells induced by Yunnan tin mine dust.@*METHODS@#Immortalized rat alveolar cells type II (RLE-6TN) cells were infected with Yunnan tin mine dust at a concentration of 200 μg/mL for nine consecutive generations to establish the infected cell model, which was named R₂₀₀ cells. The cells were cultured normally, named as R cells. The expression of leptin receptor in both cell groups was detected using the Western blot method. The optimal concentration of leptin and mitogen-activated protein kinase kinase (MEK) inhibitor (U0126) on R₂₀₀ cells was determined using the MTT method. Starting from the 20th generation, the cells in the R group were co-cultured with leptin, while the cells in the R₂₀₀ group were co-cultured with the MEK inhibitor U0126. The morphological alterations of the cells in each group were visualized utilizing hematoxylin-eosin staining. Additionally, concanavalin A (ConA) was utilized to detect any morphological differences, and an anchorage-independent growth assay was conducted to assess the malignant transformation of the cells. The changes in the ERK signaling pathway in epithelial cells after the action of leptin were detected using the Western blot method.@*RESULTS@#Both the cells in the R group and R₂₀₀ group express leptin receptor OB-R. Compared to the R₂₀₀ group, the concentration of leptin at 100 ng/mL shows the most significant pro-proliferation effect. The proliferation of R₂₀₀ cells infected with the virus is inhibited by 30 μmol/L U0126, and a statistically significant divergence was seen when compared to the control group (P<0.05). Starting from the 25th generation, the cell morphology of the leptin-induced R₂₀₀ group (R₂₀₀L group) underwent changes, leading to malignant transformation observed at the 30th generation. The characteristics of malignant transformation became evident by the 40th generation in the R₂₀₀L group. In contrast, the other groups showed agglutination of P40 cells, and the speed of cell aggregation increased with an increase in ConA concentration. Notably, the R₂₀₀L group exhibited faster cell aggregation compared to the U0126-induced R₂₀₀ (R₂₀₀LU) group. Additionally, the cells in the R₂₀₀L group were capable of forming clones starting from P30, with a colony formation rate of 2.25‰±0.5‰. However, no clonal colonies were observed in the R₂₀₀LU group and R₂₀₀ group. The expression of phosphorylated extracellular signal-regulated kinase (pERK) was enhanced in cells of the R₂₀₀L group. However, when the cells in the R₂₀₀L group were treated with U0126, a blocking agent, the phosphorylation level of pERK decreased.@*CONCLUSIONS@#Leptin can promote the malignant transformation of lung epithelial cells infected by mine dust, and the ERK signaling pathway may be necessary for the transformation of alveolar type II epithelial cells induced by Yunnan tin mine dust.


Subject(s)
Rats , Animals , Alveolar Epithelial Cells/pathology , Dust , Tin/adverse effects , Lung Neoplasms/pathology , Leptin/adverse effects , Receptors, Leptin , China , Signal Transduction , Epithelial Cells/pathology , Mitogen-Activated Protein Kinase Kinases/adverse effects
9.
China Journal of Chinese Materia Medica ; (24): 6749-6764, 2023.
Article in Chinese | WPRIM | ID: wpr-1008873

ABSTRACT

In this study, based on network pharmacology and molecular docking method, the mechanism of anti-hyperplasia of mammary glands of Xihuang Pills blood-entering components was explored, and the efficacy and key targets of Xihuang Pills blood-entering components were experimentally verified by MCF-10A proliferation model of human mammary epithelial cells. In order to clarify the material basis and mechanism of Xihuang Pills in realizing anti-hyperplasia of mammary glands, the blood-entering components of Xihuang Pills were qualitatively analyzed by UPLC-Q-TOF-MS, and 22 blood-entering components were identified. By taking the blood-entering components as the research object, the network pharmacology prediction and molecular docking verification were carried out, and finally, three key targets were screened out, namely JAK1, SRC, and CDK1. In vitro experiments show that Xihuang Pills can inhibit the proliferation of MCF-10A cells, promote the apoptosis of MCF-10A cells, and reduce the expression of JAK1, SRC, and CDK1 targets in cells. To sum up, Xihuang Pills can promote the apoptosis of mammary epithelial cells by regulating the expression of JAK1, SRC, and CDK1 and then play an anti-hyperplasia role, which provides an experimental basis for clarifying the material basis of Xihuang Pills for anti-hyperplasia effect.


Subject(s)
Humans , Chromatography, High Pressure Liquid , Molecular Docking Simulation , Network Pharmacology , Apoptosis , Hyperplasia , Drugs, Chinese Herbal/pharmacology
10.
China Journal of Chinese Materia Medica ; (24): 1936-1942, 2023.
Article in Chinese | WPRIM | ID: wpr-981413

ABSTRACT

Gigantol is a phenolic component of precious Chinese medicine Dendrobii Caulis, which has many pharmacological activities such as prevent tumor and diabetic cataract. This paper aimed to investigate the molecular mechanism of gigantol in transmembrane transport in human lens epithelial cells(HLECs). Immortalized HLECs were cultured in vitro and inoculated in the laser scanning confocal microscopy(LSCM) medium at 5 000 cells/mL. The fluorescence distribution and intensity of gigantol marked by fluorescence in HLECs were observed by LSCM, and the absorption and distribution of gigantol were expressed as fluorescence intensity. The transmembrane transport process of gigantol in HLECs were monitored. The effects of time, temperature, concentration, transport inhibitors, and different cell lines on the transmembrane absorption and transport of gigantol were compared. HLECs were inoculated on climbing plates of 6-well culture plates, and the ultrastructure of HLECs was detected by atomic force microscopy(AFM) during the transmembrane absorption of non-fluorescent labeled gigantol. The results showed that the transmembrane absorption of gigantol was in time and concentration-dependent manners, which was also able to specifically target HLECs. Energy and carrier transport inhibitors reduced gigantol absorption by HLECs. During transmembrane process of gigantol, the membrane surface of HLECs became rougher and presented different degrees of pits, indicating that the transmembrane transport of gigantol was achieved by active absorption of energy and carrier-mediated endocytosis.


Subject(s)
Humans , Lens, Crystalline/pathology , Cataract/prevention & control , Bibenzyls/pharmacology , Epithelial Cells , Cells, Cultured , Apoptosis
11.
China Journal of Chinese Materia Medica ; (24): 2176-2183, 2023.
Article in Chinese | WPRIM | ID: wpr-981348

ABSTRACT

To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 μmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 μmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 μmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 μmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 μmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 μmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.


Subject(s)
Humans , Ferroptosis , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Sincalide/pharmacology , Signal Transduction , Epithelial Cells/metabolism , Glutathione
12.
International Eye Science ; (12): 1477-1481, 2023.
Article in Chinese | WPRIM | ID: wpr-980536

ABSTRACT

Autophagic flux refers to a series of dynamic process of autophagic bilayer membrane formation, autophagosome formation, autophagolysosomes formation and degradation. The etiology of cataract is complex, including congenital abnormalities in lens development due to genetic mutations, oxidative damage due to aging, abnormalities in glucose metabolism due to diabetes, and proliferation of lens epithelial cells(LECs)stimulated by postoperative inflammatory factor, all of which are associated with the development of cataracts. A growing number of research in recent years have discovered that altering the status of LECs can contribute to the pathophysiological process of cataract by regulating autophagic flux. This review summarized the impacts of autophagic flux regulation on cataract.

13.
China Tropical Medicine ; (12): 754-2023.
Article in Chinese | WPRIM | ID: wpr-979834

ABSTRACT

@#Abstract: Objective To investigate the influences of notoginsenoside R1 (NGR1) on cell injury and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway of alveolar epithelial cells infected by Klebsiella pneumoniae (Kp). Methods A549 cells were grouped into five groups: control group (C group), infection group (Infect group), infection + low NGR1 group (Infect + L-NGR1 group), infection + high NGR1 group (Infect + H-NGR1 group), and infection+high NGR1+JAK2/STAT3 pathway inhibitor group (Infect+H-NGR1+SD-1029 group). Cell proliferation was measured using CCK8; ELISA kits were applied to detect the contents of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interferon γ (IFN-γ) in the culture medium; flow cytometry was applied to detect apoptosis; RT-qPCR was applied to detect the expressions of JAK2/STAT3; Western blot was applied to detect JAK2/STAT3 pathway, autophagy protein microtubule-associated protein 1 light chain 3 (LC3), autophagy-relatedgene5 (Atg5), autophagy-related gene (Atg) 6 (Beclin-1), apoptosis protein B-cell lymphoma 2 (Bcl-2), Bcl-2-accociated protein (Bax), cysteinyl aspartate specific proteinase (cleaved-caspase-3) proteins expression. Results Compared with the C group, the 72 h cell viability, the protein levels of Bcl-2, LC3-II/I, Atg5, Beclin-1, the mRNA relative expressions and protein phosphorylation levels of JAK2, STAT3 in the Infect group were obviously decreased (P<0.05); the contents of IL-1β, TNF-α, IFN-γ, apoptosis rate, the protein levels of Bax and cleaved-caspase-3 were obviously increased (P<0.05). Compared with Infect group, the 72 h cell viability, the protein levels of Bcl-2, LC3-II/I, Atg5, Beclin-1, the mRNA relative expressions and protein phosphorylation levels of JAK2, STAT3 in the Infect+L-NGR1 group and Infect+H-NGR1 group were obviously increased (P<0.05); the contents of IL-1β, TNF-α, IFN-γ, apoptosis rate, the protein levels of Bax and cleaved-Caspase-3 were obviously decreased (P<0.05). Compared with Infect+H-NGR1 group, the 72 h cell viability, the protein levels of Bcl-2, LC3-II/I, Atg5, Beclin-1, the protein phosphorylation levels of JAK2, STAT3 in the Infect+H-NGR1+SD-1029 group were obviously decreased (P<0.05), and the contents of IL-1β, TNF-α, IFN-γ, apoptosis rate, the protein levels of Bax and cleaved-caspase-3 were obviously increased (P<0.05). Conclusions NGR1 can activate the JAK2/STAT3 signaling pathway, promote autophagy of alveolar epithelial cells, and inhibit Kp-induced inflammatory injury and apoptosis of alveolar epithelial cells.

14.
Chinese Journal of Traumatology ; (6): 155-161, 2023.
Article in English | WPRIM | ID: wpr-981928

ABSTRACT

PURPOSE@#This study aims to elucidate the electrotaxis response of alveolar epithelial cells (AECs) in direct-current electric fields (EFs), explore the impact of EFs on the cell fate of AECs, and lay the foundation for future exploitation of EFs for the treatment of acute lung injury.@*METHODS@#AECs were extracted from rat lung tissues using magnetic-activated cell sorting. To elucidate the electrotaxis responses of AECs, different voltages of EFs (0, 50, 100, and 200 mV/mm) were applied to two types of AECs, respectively. Cell migrations were recorded and trajectories were pooled to better demonstrate cellular activities through graphs. Cell directionality was calculated as the cosine value of the angle formed by the EF vector and cell migration. To further demonstrate the impact of EFs on the pulmonary tissue, the human bronchial epithelial cells transformed with Ad12-SV40 2B (BEAS-2B cells) were obtained and experimented under the same conditions as AECs. To determine the influence on cell fate, cells underwent electric stimulation were collected to perform Western blot analysis.@*RESULTS@#The successful separation and culturing of AECs were confirmed through immunofluorescence staining. Compared with the control, AECs in EFs demonstrated a significant directionality in a voltage-dependent way. In general, type Ⅰ alveolar epithelial cells migrated faster than type Ⅱ alveolar epithelial cells, and under EFs, these two types of cells exhibited different response threshold. For type Ⅱ alveolar epithelial cells, only EFs at 200 mV/mm resulted a significant difference to the velocity, whereas for, EFs at both 100 mV/mm and 200 mV/mm gave rise to a significant difference. Western blotting suggested that EFs led to an increased expression of a AKT and myeloid leukemia 1 and a decreased expression of Bcl-2-associated X protein and Bcl-2-like protein 11.@*CONCLUSION@#EFs could guide and accelerate the directional migration of AECs and exert antiapoptotic effects, which indicated that EFs are important biophysical signals in the re-epithelialization of alveolar epithelium in lung injury.


Subject(s)
Humans , Rats , Animals , Alveolar Epithelial Cells , Lung , Lung Injury , Cell Movement/physiology
15.
Chinese Journal of Urology ; (12): 292-300, 2023.
Article in Chinese | WPRIM | ID: wpr-994027

ABSTRACT

Objective:To investigate the effect of L-carnitine on calcium oxalate-induced ferroptosis in renal tubular epithelial cells (HK-2).Methods:The effects of calcium oxalate(0, 2, 4 and 8 mmol/L) on the expression of ferroptosis-related protein long chain fatty acyl-CoA synthetase 4 (ACSL4), cystine/glutamate transporter(XCT) and glutathione peroxidase 4 (GPX4) in HK-2 cells were detected by Western blotting. The experiment was then divided into four groups: ①control group, cells were cultured in normal medium for 12 hours, then continued to use normal medium; ②L-carnitine group, cells were pretreated with medium containing 5mmol/L L-carnitine for 12 hours, then changed to medium containing 5mmol/L L-carnitine; ③calcium oxalate group, cells were cultured in normal medium for 12 hours, and then replaced with medium containing 4 mmol/L calcium oxalate; ④calcium oxalate+ L-carnitine group, the cells were pretreated with medium containing 5mmol/L L-carnitine for 12 h, and then replaced with 5mmol/L L-carnitine and 4mmol/L calcium oxalate medium. After changing the culture medium for 24 hours, the cells or supernatants were collected, and the expression levels of ferroptosis-related protein quinone oxidoreductase (NQO1), ACSL4, XCT and GPX4 were detected by Western blotting. The levels of superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde were detected by corresponding kit, and the level of reactive oxygen species in cells was detected by reactive oxygen species kit.Results:The results of Western blotting showed that the expression of ACSL4 protein in 0, 2, 4, 8 mmol/L calcium oxalate was 0.37±0.16, 0.68±0.16, 0.73±0.09, 0.89±0.03 respectively. The expression of XCT protein was 1.11±0.10, 0.91±0.14, 0.83±0.09, 0.80±0.07, respectively. The expression of GPX4 protein was 1.23±0.13, 0.99±0.17, 0.81±0.05, 0.72±0.06, respectively. Compared with 0mmol/L group, the expression of ACSL4 protein increased and the expression of XCT and GPX4 decreased in 2, 4 and 8 mmol/L groups, and the difference was more significant between 4 mmol/L group and 0 mmol/L group. So 4 mmol/L was taken as the optimal concentration for follow-up experiment. The levels of NQO1 in control group, L-carnitine group, calcium oxalate group and calcium oxalate+ L-carnitine group were (0.36±0.06, 0.54±0.05, 0.76±0.07, 0.90±0.03) respectively. There was significant difference between L-carnitine group and control group ( P<0.05). There was significant difference between calcium oxalate group and control group ( P<0.05). There was significant difference between calcium oxalate group and control group ( P<0.01). There was significant difference between calcium oxalate + L-carnitine group and calcium oxalate group ( P<0.05). The levels of ACSL4 in control group, L-carnitine group, calcium oxalate group and calcium oxalate + L-carnitine group were (0.66±0.10, 0.58±0.08, 0.99±0.03, 0.77±0.09) respectively. There was no significant difference between L-carnitine group and control group(P>0.05). There was significant difference between calcium oxalate group and control group ( P<0.01). There was significant difference between calcium oxalate + L-carnitine group and calcium oxalate group ( P<0.05). The levels of XCT in control group, L-carnitine group, calcium oxalate group and calcium oxalate + L-carnitine group were (0.93±0.08, 0.85±0.07, 0.76±0.06, 0.99±0.05). There was no significant difference between L-carnitine group and control group (P>0.05). There was significant difference between calcium oxalate group and control group ( P<0.01). There was significant difference between calcium oxalate + L-carnitine group and calcium oxalate group ( P<0.05). The levels of GPX4 in control group, L-carnitine group, calcium oxalate group and calcium oxalate + L-carnitine group were (1.10±0.09, 1.09±0.09, 0.85±0.03, 0.99±0.02) respectively. There was no significant difference between L-carnitine group and control group( P>0.05). There was significant difference between calcium oxalate group and control group ( P<0.01). There was significant difference between calcium oxalate + L-carnitine group and calcium oxalate group ( P<0.05). The levels of LDH in control group, L-carnitine group, calcium oxalate group and calcium oxalate + L-carnitine were (100.00±5.37)%, (99.50±6.38)%, (153.77±6.06)% and (132.50±5.58)%, respectively. There was no significant difference between L-carnitine group and control group( P>0.05). There was significant difference between calcium oxalate group and control group ( P<0.01). There was significant difference between calcium oxalate + L-carnitine group and calcium oxalate group ( P<0.05). The SOD levels in control group, L-carnitine group, calcium oxalate group and calcium oxalate + L-carnitine group were (100.00±5.79)%, (105.80±3.26)%, (44.74±7.60)% and (85.01±5.15)%, respectively. There was no significant difference between L-carnitine group and control group( P>0.05). There was significant difference between calcium oxalate group and control group ( P<0.01). There was significant difference between calcium oxalate + L-carnitine group and calcium oxalate group ( P<0.05). The levels of GSH in control group, L-carnitine group, calcium oxalate group and calcium oxalate + L-carnitine group were (100.00±4.73)%, (107.10±5.48)%, (53.49±3.98)% and (85.18±5.48)%, respectively. There was no significant difference between L-carnitine group and control group( P>0.01). There was significant difference between calcium oxalate group and control group ( P<0.01). There was significant difference between calcium oxalate + L-carnitine group and calcium oxalate group ( P<0.01). The levels of MDA in control group, L-carnitine group, calcium oxalate group and calcium oxalate + L-carnitine group were (100.00±2.36)%, (98.00±11.10)%, (129.11±2.59)% and (113.35±5.79)%, respectively. There was no significant difference between L-carnitine group and control group( P>0.05). There was significant difference between calcium oxalate group and control group ( P<0.01). There was significant difference between calcium oxalate + L-carnitine group and calcium oxalate group ( P<0.01). The fluorescence intensity of ferrous ion in control group, calcium oxalate group and calcium oxalate + L-carnitine group was (39.77±0.68) AU, (68.40±3.14) AU and (48.60±4.30) AU, respectively. There was significant difference between calcium oxalate group and control group ( P<0.01). There was significant difference between calcium oxalate + L-carnitine group and calcium oxalate group ( P<0.05). The fluorescence intensity of reactive oxygen species in control group, calcium oxalate group and calcium oxalate + L-carnitine group was (63.98±9.41) AU, (145.41±8.39) AU and (85.37±4.51) AU, respectively. There was significant difference between calcium oxalate group and control group ( P<0.01). There was significant difference between calcium oxalate + L-carnitine group and calcium oxalate group ( P<0.01). Transmission electron microscopy results showed that mitochondria were wrinkled, cristae were broken or disappeared in the calcium oxalate group compared to the control group, and a double-layer membrane structure was evident. DAPI staining showed that compared with the control group, some of the nuclei in the calcium oxalate group were significantly more damaged, while compared with the calcium oxalate group, the nuclei in the calcium oxalate + L-carnitine were significantly less damaged. The results of crystal adhesion test showed that compared with the control group, calcium oxalate crystals in the calcium oxalate group adhered to the cells in black-like particles and formed clusters. Compared with the calcium oxalate group, the calcium oxalate + L-carnitine showed less black particles adhering to the cells. Conclusions:L-carnitine may reduce the effects of oxidative stress and ferroptosis induced by calcium oxalate, thus reducing cell damage and crystal adhesion.

16.
Chinese Journal of Geriatrics ; (12): 430-434, 2023.
Article in Chinese | WPRIM | ID: wpr-993831

ABSTRACT

Objective:To investigate the predictive value of the epithelial cell proliferation(ECP)pathway genes for the prognosis of elderly non-small cell lung cancer patients treated with immunotherapy.Methods:A total of 106 elderly patients aged 70 years and over receiving immunotherapy in the POPLAR and OAK clinical trials were retrospectively analyzed in October 2022.According to the mutation status, patients were divided into an ECP pathway-related gene mutation group(ECP mutation group, n=25)and an ECP pathway-related gene non-mutation group(ECP non-mutation group, n=81). The primary endpoints were overall survival(OS)and progression-free survival(PFS). Differences in survival and efficacy between the two groups were compared, and subgroup analysis was performed on clinical factors and genes involved in the pathway.Pyclone was used to calculate the distribution of major clones and subclones in each patient, and differences in survival were compared.Results:Survival outcomes were worse in the ECP(+ )group than in the ECP(-)group(mOS: 10.9 months vs.17.1 months, HR=1.84, 95% CI: 1.09-3.08, P<0.05; mPFS: 2.8 months vs.4.2 months, HR=1.58, 95% CI: 1.00-2.51, P<0.05). Of all mutations in ECP pathway-related genes, mutations in the RB1 gene had a significant prognostic effect on all patients, with the negative prognostic effect especially prominent in ECP(+ )patients.Compared with ECP(-)patients, ECP(+ )patients had a shorter mOS(6.9 months vs.12.6 months, HR=3.14, 95% CI: 1.10-8.97, P=0.024). Ten patients had clonal mutations and 15 patients had sub-clonal mutations in ECP pathway-related genes and the former had a shorter mPFS than the latter(1.3 months vs.5.3 months, HR=3.23, 95% CI: 1.25-8.37, P=0.011). Conclusions:Gene mutations in the epithelial cell proliferation pathway are a negative prognostic factor in elderly non-small cell lung cancer patients receiving immunotherapy, and mutations located in the clonal cluster have a stronger impact on the prognosis.

17.
Chinese journal of integrative medicine ; (12): 847-856, 2023.
Article in English | WPRIM | ID: wpr-1010267

ABSTRACT

The latest guideline about ulcerative colitis (UC) clinical practice stresses that mucosal healing, rather than anti-inflammation, is the main target in UC clinical management. Current mucosal dysfunction mainly closely relates to the endoscopic intestinal wall (mechanical barrier) injury with the imbalance between intestinal epithelial cells (IECs) regeneration and death, as well as tight junction (TJ) dysfunction. It is suggested that biological barrier (gut microbiota), chemical barrier (mucus protein layer, MUC) and immune barrier (immune cells) all take part in the imbalance, leading to mechanical barrier injury. Lots of experimental studies reported that acupuncture and moxibustion on UC recovery by adjusting the gut microbiota, MUC and immune cells on multiple targets and pathways, which contributes to the balance of IEC regeneration and death, as well as TJ structure recovery in animals. Moreover, the validity and superiority of acupuncture and moxibustion were also demonstrated in clinic. This study aims to review the achievements of acupuncture and moxibustion on mucosal healing and analyse the underlying mechanisms.


Subject(s)
Rats , Animals , Colitis, Ulcerative/metabolism , Moxibustion , Rats, Sprague-Dawley , Acupuncture Therapy , Acupuncture
18.
China Pharmacy ; (12): 2721-2726, 2023.
Article in Chinese | WPRIM | ID: wpr-998555

ABSTRACT

OBJECTIVE To investigate the inhibitory effects of formononetin on lipopolysaccharide (LPS)-induced apoptosis and inflammatory response in alveolar epithelial cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. METHODS Human lung cancer alveolar basal epithelial cells A549 were cultured in vitro and divided into control group (no intervention), model group (1 μg/mL LPS), different concentrations of formononetin groups (1 μg/mL LPS+6.25, 12.5, 25, 50 μmol/L formononetin). The levels of inflammatory factors (interleukin-8, tumor necrosis factor-α) and cell viability were detected in each group. Another A549 cells were divided into control group, model group (1 μg/mL LPS), LPS+25 group (1 μg/mL LPS+25 μmol/L formononetin), inhibitor group (1 μg/mL LPS+20 μmol/L LY294002), formononetin+inhibitor group (1 μg/mL LPS+25 μmol/L formononetin+20 μmol/L LY294002) and formononetin+activator group (1 μg/mL LPS+25 μmol/L formononetin+ 10 μmol/L SC79). The secretion levels and mRNA expressions of inflammatory factors, cell apoptosis, and expressions of the key proteins of PI3K/Akt signaling pathway were detected in each group. RESULTS Compared with model group, the levels of inflammatory factors were decreased significantly after the intervention of 25 μmol/L of formononetin, and the cell viability was increased significantly (P<0.05). Compared with the control group, the secretion levels and mRNA expressions of inflammatory factors, apoptotic rate, and relative expressions of phosphorylated Akt and phosphorylated PI3K of the model group were increased significantly (P<0.05). Compared with the model group, the above indexes of the LPS+25 group and the inhibitor group were decreased significantly (P<0.05). Compared with the LPS+25 group, the above indicators of formononetin+inhibitor group were further decreased, while those of formononetin+activator group were increased significantly (P<0.05). CONCLUSIONS Formononetin can inhibit LPS-induced epithelial cell apoptosis and improve inflammatory response, and the mechanism may be related to the inhibition of the PI3K/Akt signaling pathway.

19.
Chinese Journal of Medical Aesthetics and Cosmetology ; (6): 54-58, 2023.
Article in Chinese | WPRIM | ID: wpr-995903

ABSTRACT

Objective:To verify that hypoxia induces epithelial mesenchymal transition in HaCaT cells, and to observe the effect of LncRNA HOTAIR on epithelial mesenchymal transition in HaCaT cells.Methods:From Jan. 2018 to Dec. 2018 in Chinese Academy of Medical Science, HaCaT cells were divided into four groups: group A cultured under normoxia, group B cultured under hypoxia, group C transfected with sh-control cultured under hypoxia, and group D transfected with sh-LncRNA HOTAIR cultured under hypoxia. After 36 hours of culturing, the expression of E-cadherin and vimentin were detected using qPCR and Western blot. The migration of HaCaT cells was evaluated by Transwell assay.Results:The relative quantity of E-cadherin mRNA in the four groups were 3.076±0.271, 1.000±0.089, 1.024±0.222, and 2.595±0.085, while vimentin mRNAs were 1.002±0.183, 4.170±0.279, 4.111±0.477, and 2.412±0.134, respectively. In addition, the Transwll invasion assay showed that numbers of cell migration in the four groups were 32.70±3.93, 125.40±6.26, 120.10±6.79, and 58.24±7.06, respectively.Conclusions:The study suggests that hypoxia promotes epithelial mesenchymal transition in keratinocytes. Furthermore, downregulation of HOTAIR is noted to inhibit epithelial mesenchymal transition of keratinocytes under hypoxia condition.

20.
Chinese Journal of Ocular Fundus Diseases ; (6): 576-582, 2023.
Article in Chinese | WPRIM | ID: wpr-995670

ABSTRACT

Objective:To observe and preliminarily explore the effect of mogroside on oxidative stress of retinal pigment epitheliaum (RPE) cells induced by hydrogen peroxide (H 2O 2) and its possible mechanism. Methods:A experimental study. The RPE cells were divided into control group, H 2O 2 group, silent information regulator of transcription 1 (SIRT1) inhibitor EX527 group (EX527 group), mogroside group, mogroside+EX527 group. Methyl thiazolete trazolium method was used to detect cell survival rate. Flow cytometry was used to detect cell apoptosis rate. 2' ,7'-dichlorodihydrofluorescein diacetate fluorescent probe method, xanthine method and enzyme-linked immunosorbent assay method were used to detect the level of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in cells respectively. Real-time quantitative polymerase chain reaction and Western blot were used to detect relative expressions of SIRT1, nuclear factor erythroid-2-related actor 2 (Nrf2), heme oxygenase-1 (HO-1) mRNA and protein in cells. One-way ANOVA was used for comparison among groups. The pairwise comparison between groups was tested by the least significant difference t test. Results:Compared with the control group, the H 2O 2 group cell survival rate decreased, the apoptosis rate increased, the ROS level in the cells increased, the SOD activity decreased, the MDA content increased, and the relative expression of SIRT1, Nrf2, HO-1 mRNA and protein decreased ( P<0.05). Compared with H 2O 2 group, the cell survival rate decreased, apoptosis rate increased, the cell ROS level increased, SOD activity decreased, MDA content increased, SIRT1, Nrf2, HO-1 mRNA and protein expression decreased in EX527 group ( P<0.05); the cell survival rate increased, apoptosis rate decreased, ROS level decreased, SOD activity increased, MDA content decreased, and the relative expression of SIRT1, Nrf2, HO-1 mRNA and protein increased in mogroside group ( P<0.05). Compared with the mogrosides group, the cell survival rate decreased, the apoptosis rate increased, the level of ROS increased, SOD activity decreased, MDA content increased, SIRT1, Nrf2, HO-1 mRNA and protein decreased in mogrosides+EX527 group ( P<0.05). Conclusions:Mogrosides can alleviate the oxidative stress response of visual RPE cells induced by H 2O 2, promote cell proliferation, and reduce cell apoptosis. Mogrosides may exert antioxidant effects by activating the SIRT1/Nrf2 signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL