Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
1.
Chinese Critical Care Medicine ; (12): 221-224, 2024.
Article in Chinese | WPRIM | ID: wpr-1025379

ABSTRACT

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host immune response to infection. The development of sepsis is accompanied by the secretion of exosomes by a variety of cells, including non-coding RNA, metabolic small molecules and proteins, which play an important role in immune inflammatory response, oxidative stress, and coagulation dysfunction. The rapid development of new detection technologies has promoted the application of exosomes in the early warning, severity stratification, treatment effect and prognosis evaluation of sepsis. This article reviews the new detection technology of exosomes, the involvement of exosomes in the pathological progress of sepsis, and the latest progress in the early diagnosis, disease assessment and treatment of sepsis, in order to provide new ideas for the diagnosis and treatment of sepsis.

2.
Article in Chinese | WPRIM | ID: wpr-1029900

ABSTRACT

Exosomes are nanoscale extracellular vesicle structures that communicate and exchange information between cells. They carry a variety of biologically active molecules whose compositions and contents vary according to the origin and recipient cells. Therefore, exosomes can be used as biomarkers. Neurodegenerative diseases are diseases with hidden onset, so early screening and accurate diagnosis is undoubtedly a reliable guarantee to reduce their mortality and increase the cure rate. Exosomes, as a research hotspot in recent years, have great potential for the diagnosis and treatment of diseases given their transport capacity and contents, and have significant advantages in abundance, stability, diversity and accessibility. The purpose of this paper is to discuss exosomes as potential candidates for early diagnosis of neurodegenerative diseases, and thus to elaborate new fields of their application, with a view to providing a richer perspective for clinical prediction and treatment.

3.
Article in Chinese | WPRIM | ID: wpr-1029904

ABSTRACT

Objective:To establish a sensing technology of catalytic hairpin self-assembly (CHA) combining with clustered interspaced short palindromic repeats with associated protein 12a (CRISPR-Cas12a) for the detection of exosomal microRNA-21 (miR-21), and to analyze the performance.Methods:Eight patients diagnosed as breast cancer in the First Affiliated Hospital of the Army Military Medical University from September to October 2023 were selected as the breast cancer group; 8 healthy individuals who underwent physical examinations during the same period were selected as the healthy control group. Plasma exosomes and their miR-21 were extracted using the kit. DNA hairpins and CRISPR RNA sequences were designed for miR-21 sequences. The feasibility of detection technology was validated using polyacrylamide gel electrophoresis and fluorescence spectrophotometer. Hairpins concentration, CHA reaction time, Cas12a protein concentration and Cas12a protein reaction time were further optimized. On this basis, miR-21 was detected at different concentrations (0, 0.1, 0.5, 1.0, 2.5, 5.0, 7.5, 10.0 nmol/L), and fluorescence intensity was collected for unary linear regression analysis to evaluate methodological sensitivity; meanwhile, different types of miRNAs (miR-31, miR-26a, miR-192, miR-25-3p) and blank controls were detected to evaluate methodological specificity. A case-control study was conducted to detect the relative expression level of plasma exosomal miR-21 in breast cancer group and healthy control group using this detection technology and reverse transcription PCR (RT-PCR) to evaluate the detection ability of clinical samples.Results:A detection method for exosomal miR-21 was established using CHA combining with CRISPR-Cas12a. The concentration of miR-21 detected by this method showed a good linear relationship with fluorescence intensity (the linear correlation coefficient 0.966 7), and the linear detection range was 0.1-10.0 nmol/L, and the detection limit was 87.81 pmol/L. The fluorescence intensity of miR-21 was 450.27±23.96 which was higher than that of miR-31, miR-26a, miR-192, miR-25-3p, and the blank group (98.89±7.35, 98.12±2.07, 98.93±2.45, 96.66±2.45, 82.93±3.54, respectively), with statistical significance ( P<0.001). The results of RT-PCR showed that the relative expression levels of plasma exosomal miR-21 in the breast cancer group were higher than that in healthy control group (1.83±0.27 vs 0.93±0.12, P<0.001); CHA combining with CRISPR-Cas12a detection technology showed that the relative expression levels of plasma exosomal miR-21 in breast cancer group were higher than that in healthy control group (1.94±0.21 vs 0.98±0.08, P<0.001); There was no significant difference in the relative expression levels of plasma exosomal miR-21 between CHA combining with CRISPR-Cas12a detection technology and reverse transcription PCR in breast cancer group and healthy control group ( P>0.05). Conclusion:In this study, a highly sensitive and specific sensing technology of CHA combining with CRISPR-Cas12a for exosomal miR-21 was established. The results of detecting plasma exosomal miR-21 were consistent with the results of reverse transcription PCR, which can be used for screening of breast cancer patients.

4.
Article in Chinese | WPRIM | ID: wpr-1029922

ABSTRACT

Objective:To investigate the expression and clinical application value of exosomal circRPS6 in serum of colorectal cancer (CRC) patients.Methods:Peripheral serum samples were collected from 115 CRC patients admitted to Henan Provincial People′s Hospital from January 2019 to December 2020. There were 68 males and 47 females, aged (63.0±9.5) years. Meanwhile, one hundred and twenty healthy subjects from the same period wereenrolled, with 70 males and 50 females, aged (61.0±10.7) years. In addition, sixty pairs of tumor and adjacent tissue specimens from CRC patients undergoing surgical treatment were collected. The circRPS6 expression in serum exosome and tissue of CRC patients were detected via real-time fluorescence quantitative PCR (RT-qPCR), and its relationship with clinicopathological features and prognosis of CRC patients were also investigated. The levels of CEA and CA19-9 in serum were detected by electrochemiluminescence assay. The ROC curve and AUC were used to estimate the diagnostic capacity. Univariate and multivariate regression analysis was performed using Cox proportional hazard analysis.Results:The expression level of circRPS6 in CRC tissue was significantly higher than that in adjacent tissue( Z=5.38, P<0.001). Compared with healthy control, the expression of serum exosomal circRPS6 was significantly upregulated in the CRC group( t=14.52, P<0.001). ROC curve analysis results showed that the AUC of exosomal circRPS6 was 0.882, which had a higher diagnostic efficacy in CRC patients than CEA and CA19-9 detection. There was a positive correlation between the expression level of exosomal circRPS6 with TNM stage and lymph node metastasis and distant metastasis( P<0.05). Kaplan-Meier survival analysis revealed that CRC patients with low exosomal circRPS6 levels had a much longer average survival time compared with those in high group. Moreover,multivariate analysis results indicated that exosomal circRPS6 was an independent prognostic factor in colorectal cancer. Conclusion:Exosomal circRPS6 is highly expressed in the serum of CRC patients and correlated with malignant progression and poor prognosis, which is expected to be a potential marker for the diagnosis and prognosis evaluation of CRC patients.

5.
Article in Chinese | WPRIM | ID: wpr-1031082

ABSTRACT

【Objective】 To evaluate the differential miRNA expression of breast milk exosome in premature and full-term groups, and to analyze the regulatory pathways by bioinformatics, so as to provide guidance and scientific basis for the growth and development of premature infants and the prevention and treatment of related diseases. 【Methods】 From August 2020 to June 2021, breast milk samples from 13 premature (premate group) and 9 full-term infants(full-term group) in the Department of Child Health Care of the Second Affiliated Hospital of Nanjing Medical University were collected to extract exosomes. The miRNAs of two groups of breast milk exosomes were sequenced by high-throughput sequencing. According to the sequencing results, miRNA expression profiles of milk exosome were analyzed. Biological function software was used to carry out GO and KEGG pathway analysis of differential miRNA. 【Results】 The expression of miRNA in human milk exosomes was rich, especially hsa-miR-148a-3p,hsa-let-7b-5p, hsa-let-7g-5p, hsa-miR-22-3p, hsa-miR-99a-5p, hsa-miR-200, hsa-miR-146b-5p and hsa-miR-26a-5p were relatively high expressed in preterm group and full-term group. Differential expression analysis showed that compared with full-term infant breast milk, 7 miRNAs were up-regulated(log2|fold change|=2.803, 2.714, 1.632, 2.360, 1.350, 3.387, 2.137, respectively), and 5 miRNAs were down-regulated(log2|fold change|=-2.553, -2.197, -2.771, -1.395, -1.136, respectively)(|fold change>2|, P<0.05) in breast milk for preterm infants. In these differential expressed miRNAs, down-regulated miR-29b(P=0.001) and up-regulated miR-133a-3p(P=0.004) were associated with inflammation, and up-regulated miR-126-5p(P=0.021) and miR-126-3p(P=0.041) were associated with lipid metabolism. The fatty acid biosynthesis pathway was obviously enriched in preterm group. MiR-7-5p, miR-29b-3p and miR-100-5p played a role in the fatty acid synthesis pathway. 【Conclusions】 Exosomal miRNAs are rich in breast milk, and have significant differences between preterm and full-term infants′ mothers. The differentially expressed miRNA in preterm infants treast milk may be related to inflammation and promote the growth and development of preterm infants through the fatty acid biosynthesis pathway.

6.
Journal of Modern Urology ; (12): 187-191, 2024.
Article in Chinese | WPRIM | ID: wpr-1031678

ABSTRACT

Prostate cancer (PCa) is one of the most common tumors in men.In recent years, various researches on this disease and clinical applications have benefited patients.Exosome is a subclass of extracellular vesicles (EVs).Many studies have explored the mechanisms of exosome in mediating epithelial mesenchymal transformation, angiogenesis, tumor microenvironment establishment, immune escape and drug resistance acquisition in PCa, which provides a new perspective for finding new diagnostic markers.This article reviews the role of exosome in the pathogenesis of PCa and its diagnostic application.

7.
Organ Transplantation ; (6): 398-405, 2024.
Article in Chinese | WPRIM | ID: wpr-1016904

ABSTRACT

Immunosuppressant is one of the main preventive measures for rejection after organ transplantation, whereas it may reduce the host response capability to pathogens and increase the risk of infection. In recent years, the application of mesenchymal stem cell (MSC) therapy in the field of solid organ transplantation has attracted widespread attention. Preclinical studies have shown that MSC therapy may prolong the survival time of transplant kidney, induce immune tolerance, accelerate the repair of acute kidney injury and promote the recovery of renal function. Clinical trials have confirmed the safety, tolerance and effectiveness of MSC therapy. Consequently, general characteristics, immunomodulation and tissue repair function of MSC, and the application of MSC in clinical trials of kidney transplantation were reviewed, the unresolved issues were briefly discussed and the prospects for subsequent research were predicted, aiming to provide reference for promoting the application of MSC therapy in clinical kidney transplantation.

8.
Chinese Journal of Biologicals ; (12): 356-360, 2024.
Article in Chinese | WPRIM | ID: wpr-1016965

ABSTRACT

@#Objective To isolate,purify and identify exosomes secreted by mouse primary peritoneal macrophages.Methods Five male C57BL/6 mice were intraperitoneally injected with 3% mercaptoacetate broth respectively,and the primary peritoneal macrophages were obtained by lavage,and then the purity was analyzed by flow cytometry.The exosomes of mouse primary peritoneal macrophages were extracted by ExoQuick TC exosome kit,which were measured for the protein content with BCA kit,observed for the morphology by transmission electron microscopy,detected for the particle size and distribution with nanoparticle tracking analyzer,and determined for the expression of exosome-specific markers(CD9,CD63 and TSG101) by Western blot.Results About 5 × 10~6 peritoneal macrophages with the purity of(99.17±0.65)%were obtained from each mouse.Approximately 869 μg of exosomal protein was extracted from 5 mL of mouse primary peritoneal macrophage culture supernatant.The exosomes of mouse primary peritoneal macrophages were typical tea saucerlike vesicles with strong refraction under electron microscopy,and highly expressed the exosome-specific markers TSG101,CD63 and CD9.The particle size distribution was concentrated between 100 and 200 nm,with an average particle size of175.2 nm.Conclusion Intraperitoneal injection of mercaptoacetate broth can improve the yield of mouse primary peritoneal macrophages.ExoQuick TC.exosome kit can extract sufficient amount of exosomes with high purity from mouse primary peritoneal macrophages.

9.
Article in Chinese | WPRIM | ID: wpr-1019120

ABSTRACT

Objective To comapre and analyze the differences and commonalities of expression profiles of serum exosomal microRNA between patients with thyroid nodules and healthy persons at different iodine levels,and then provide evidence for screening early diag-nostic markers of thyroid nodules at different iodine levels.Methods The peripheral blood samples from 10 patients with thyroid nod-ules and healthy volunteers at different iodine levels were collected.Their serum iodine levels were measured by the arsenic cerium cat-alytic spectrophotometry.Serum exosomal microRNA were extracted and the expression levels of microRNA were determined by the high-throughput sequencing technology.The differential target genes were predicted and further performed Gene ontology(GO)analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis.Results Compared with healthy volunteers,there were 6 downreg-ulated miRNAs in the patients with thyroid nodules at different iodine levels,namely miR-324-5p,miR-6511b-3p,miR-9903,miR-550a-3p,miR-5001-3p,and miR-3688-3p.Differentially expressed exosomal microRNA could regulate the MAPK signaling path-way,PI3K-AKT signaling pathway,VEGF signaling pathway,and NF-κB signaling pathway.Conclusion Six differentially expressed microRNAs is identified,which may serve as biological markers for the early diagnosis of thyroid nodules at different iodine levels.

10.
Journal of Preventive Medicine ; (12): 70-73, 77, 2024.
Article in Chinese | WPRIM | ID: wpr-1038620

ABSTRACT

Objective@#To analyse the expression of differential mRNA in the plasma exosomes in patients with latent tuberculosis infection (LTBI) and active tuberculosis (ATB) using high-throughput sequencing, so as to provide insights into differential diagnosis of LTBI and ATB.@*Methods@#The plasma samples were collected from the patients treated at The Affiliated Hospital of Hangzhou Normal University, including 16 cases of LTBI and 21 cases of ATB. The exosomes were extracted by Invitrogen extracellular extracts purification kit, and the size and morphology of exosomes were observed by transmission electron microscope (TEM). The exosomes were identified by Western blotting. Total RNA was extracted from plasma exosomes using high-throughput sequencing, differential expression mRNA was identified, and gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Two differential mRNAs with the highest differential expression fold were selected, and five patients with ATB and three patients with LTBI were recruited for verification using real-time quantitative PCR.@*Results@#The sequencing results of plasma exosomes showed that compared with ATB patients, 2 875 differentially expressed mRNAs were detected in exosomes of LTBI patients, of which 1 002 mRNAs were up-regulated and 1 873 mRNAs were down-regulated. The most significant differentially expressed downregulated and upregulated mRNA were M6PR and RGPD5, respectively. GO analysis and KEGG pathway analysis showed that differential mRNAs were enriched in protein serine kinase activity, rRNA binding molecular function, human cytomegalovirus infection, pancreatic cancer, endometrial cancer, insulin signaling pathway and FoxO signaling pathway. The real-time quantitative PCR showed that the expression of differential mRNA was consistent with sequencing. Compared with ATB patients, the relative expression level of M6PR in plasma exosomes in LTBI patients (0.954±0.212) was downregulated compared with that of ATB patients (2.168±0.226), while the relative expression level of RGPD5 (2.126±0.200) was upregulated compared with that of ATB patients (0.588±0.129) (both P<0.05).@*Conclusions@#There is a difference in mRNA expression of plasma exosomes between patients with LTBI and ATB. M6PR and RGPD5 may become markers for distinguishing plasma exosomes between LTBI and ATB.

11.
Chinese Journal of Biologicals ; (12): 817-823, 2024.
Article in Chinese | WPRIM | ID: wpr-1039272

ABSTRACT

@#Objective To explore the effect of methylene blue photochemistry(MB-P)viral inactivation treatment on the expression of microRNA(miRNA)in plasma exosomes,in order to provide a new reference for the quality control of MB-P virus inactivated plasma. Methods Whole blood samples of 11 healthy volunteers were collected from July 2021 to April2022. Fresh plasma from the same person was prepared into two parts,fresh frozen plasma(FFP)and MB-P virus inactivated plasma,respectively. The plasma exosomes were isolated by differential centrifugation,and identified by transmission electron microscopy(TEM)and nanoparticle tracking analysis(NTA). Then the expression profiles of miRNA were detected by microarray technique. Furthermore,four differentially expressed miRNA were verified by qRT-PCR,the target genes of differentially expressed miRNA were predicted by bioinformatics methods,and GO function enrichment analysis and KEGG pathway enrichment analysis were performed on the differentially expressed genes. Results The morphological characteristics and diameters of the extracted vesicles of the two groups were consistent with the characteristics of exosomes. Compared with the control group,there were 14 differentially expressed miRNA in plasma exosomes of MB-P group,of which the expression of six miRNA was up-regulated and eight miRNA was down-regulated. The results of qRT-PCR were generally consistent with the expression trend of microarray. The target genes of differentially expressed miRNA were mainly involved in DNA binding,ion binding,catalytic activity and other functions,and participated in a variety of biological processes such as nucleic acid metabolism,biosynthesis,and transcription regulation. In addition,significantly enriched functional pathways were closely related to viral infectious diseases,tumors,PI3K-Akt signaling pathway,MAPK signaling pathway and so on.Conclusion The expression of exosome miRNA in MB-P virus inactivated plasma was different from that in FFP. The plasma exosome miRNA may be used as a potential reference for the quality evaluation of MB-P virus inactivated plasma.

12.
Article in Chinese | WPRIM | ID: wpr-1020704

ABSTRACT

Objective To compare and analyze the gene mutation of EGFR of bronchoalveolar lavage fluid(BALF)exosome,serum and lung cancer tissue specimens of patients with advanced non-small cell lung cancer(NSCLC)and assess whether the BALF exosome specimens are suitable for screening before clinical targeted therapy,to provide new ideas and screening methods for early individualized treatment of advanced NSCLC patients.Methods BALF exosomes,serum and lung cancer tissue specimens EGFR gene mutations of 78 cases with advanced NSCLC were detected by using amplification refractory mutation system(ARMS)method in Department of Respiratory and Critical Care Medicine in our hospital from May 2021 to May 2023,and the results were retrospec-tively analyzed.A comparative analysis of the specimens was conducted using lung cancer tissue specimens as bench-marks.Results A total of 33,25 and 38 cases of EGFR gene mutation and 42,53 and 40 cases of EGFR wild type were detected in BALF exosomes,serum and lung cancer tissues specimens respectively.The mutation rate of EGFR gene was 42.3%(33/78,32.1%(25/78)and 48.7%(38/78)in BALF exosomes,serum and lung cancer tissues specimens respectively.EGFR detection showed no results in 3 cases and the false-negative rate was 6.4%(5/78)in BALF specimen,and false-negative rate was 16.7%(13/78)in serum.The detection coincidence rate of EGFR mutation was 86.8%(33/38)in BALF exosomes specimen,and 65.8%(25/38)in serum.Conclusions EGFR gene mutation rate in BALF exosome specimen is consistent with that in serum and lung cancer tissue samples,showing no statistical significance(P>0.05).It is superior to serum specimen and suitable for patient screening before targeted therapy and provides new ideas and screening methods for early individualized treatment decisions of advanced NSCLC patients.

13.
Article in Chinese | WPRIM | ID: wpr-1021190

ABSTRACT

BACKGROUND:Umbilical cord mesenchymal stem cells(UMSCs)have been proven to have therapeutic effects on cartilage injury,and exosomes are the main carriers for UMSCs to exert therapeutic effects in vivo.Our research group previously found that lncRNA H19 is an important active molecule that mediates the activity of UMSCs-derived exosomes regulating chondrocytes.LncRNA H19 could adsorb miR-29b-3p to promote the proliferation and regeneration of chondrocytes,but its downstream mechanism is still unclear. OBJECTIVE:To reveal the specific mechanism of UMSCs in the treatment of cartilage injury from the perspective of exosomes and lncRNAs,so as to provide a new target for the treatment of cartilage injury. METHODS:UMSCs stably overexpressing lncRNA H19 were constructed.H19-Exos were extracted by ultra-centrifugation.The exosomes were identified by transmission electron microscopy,Nanosight,western blot assay and exosome uptake assay.The effect of miR-29b-3p overexpression and silencing on the TGF-β1/Smad3 pathway was detected by western blot assay,qPCR and dual luciferase reporter gene system.The biological effect of H19-Exos on cartilage regeneration was verified by the specific TGF-β1/Smad3 inhibitor in vitro and in vivo. RESULTS AND CONCLUSION:(1)H19-Exos showed a typical cup shape under an electron microscope,and the particle size was approximately 130 nm.H19-Exos expressed CD63,CD81 and TSG1010.(2)Overexpression of miR-29b-3p could down-regulate the mRNA and protein levels of TGF-β1 and Smad3,while silencing miR-29b-3p could up-regulate the mRNA and protein levels of TGF-β1/Smad3.(3)Dual-luciferase reporter gene system showed that miR-29b-3p had significant differences in the activities of downstream target genes TGF-β1 and Smad3.(4)The osteoarthritis models of rats were successfully established by injection of type II collagenase into the knee joint.H19-Exos significantly promoted cartilage regeneration.The specific TGF-β1/Smad3 inhibitor SB-431542 could block the biological effect of H19-Exos on cartilage regeneration in vitro and in vivo.(5)This study systematically demonstrated the promotion effect of UMSCs-derived exosomes highly expressing lncRNA H19 on cartilage regeneration,and the specific mechanism is that lncRNA H19 promotes cartilage regeneration by targeting miR-29b-3p/TGF-β1/Smad3 pathway.

14.
Article in Chinese | WPRIM | ID: wpr-1021194

ABSTRACT

BACKGROUND:Bone marrow mesenchymal stem cells(BMSCs)can release a large number of exosomes(Exos).The effect of Exos derived from BMSCs on hepatocyte apoptosis and the specific mechanism has not been fully clarified. OBJECTIVE:To explore the effect of miR-21-5p carried by Exos derived from BMSCs on apoptosis of rat liver cells and its mechanism. METHODS:Rat BMSCs were isolated and miR-21-5p NC or miR-21-5p inhibitor was transfected into BMSCs.The Exos were extracted by ultracentrifugation and named(BMSCs+miR-21-5p NC)-Exos and(BMSCs+miR-21-5p inhibitor)-Exos.BMSCs-derived Exos were co-cultured with rat hepatocytes to observe the effect of inhibiting miR-21-5p expression on the apoptosis of rat hepatocytes.The targeting relationship between miR-21-5p and PIK3R1 was verified by double luciferase reporter gene detection.TUNEL was used to detect the effect of miR-21-5p directly targeting PIK3R1 in Exos to activate the PI3K/AKT signaling pathway on hepatocyte apoptosis in BRL rats. RESULTS AND CONCLUSION:(1)The double luciferase reporting system confirmed that when PI3KR1 wild type vector and miR-21-5p mimics co-transfected 293T cells,the luciferase activity decreased significantly compared with the PI3KR1 mutant vector co-transfected group,indicating that miR-21-5p could target PIK3R1.(2)TUNEL test results showed that compared with(BMSCs+miR-21-5p NC)-Exos group,(BMSCs+miR-21-5p inhibitor)-Exos treatment significantly increased the apoptosis rate.Compared with the(BMSCs+miR-21-5p NC)-Exos group,after the addition of AKT inhibitor LY294002,the apoptosis rate was significantly increased.(3)The results indicate that Exos may inhibit the apoptosis of BRL rat hepatocytes through miR-21-5p,in which miR-21-5p directly targets PIK3R1 to activate PI3K/AKT signaling pathway.

15.
Article in Chinese | WPRIM | ID: wpr-1021195

ABSTRACT

BACKGROUND:Endothelin has been found to be involved in the breakdown of the blood-spinal cord barrier after spinal cord injury,and stem cell-derived exosomes can reduce the permeability of the blood-spinal cord barrier and repair spinal cord injury. OBJECTIVE:To investigate whether exosomes produced by human umbilical cord mesenchymal stem cells can reduce the permeability of the blood-spinal cord barrier by inhibiting endothelin-1 expression,thus repairing spinal cord injury. METHODS:Exosomes were extracted from the cultured supernatant by the hyperspeed centrifugation method.The morphology of exosomes was observed by transmission electron microscope.The expression levels of tsg101 and CD63 were detected by western blot assay.Eighty SD rats were randomly divided into sham operation group,model group,exosome group,and endothelin-1 group(n=20).The modified Allen's method was used to create the rat model of spinal cord injury.In the endothelin-1 group,10 μL(1 μg/mL)endothelin-1 was injected directly into the injured area with a microsyringe.Immediately,1 day,2 days after operation,sham operation group and model group were injected with 200 μL PBS solution through the tail vein;the exosome group and endothelin-1 group were injected with 200 μL exosome(200 μg/mL)solution through the tail vein,respectively.Hind limb motor function scores were performed on days 1,3,7,14 and 21 after spinal cord injury.The blood-spinal cord barrier permeability was observed by Evans blue staining on day 7 after injury.The expression levels of tight junction proteins β-Catenin,ZO-1,Occludin and endothelin-1 in the spinal cord were detected by western blot assay. RESULTS AND CONCLUSION:(1)Basso-Beattie-Bresnahan score in the exosome group was significantly higher than that in the model group at 3-21 days after injury(P<0.05).Hematoxylin-eosin staining showed that spinal cord injury was greatly reduced in the exosome group compared with the model group.Basso-Beattie-Bresnahan score in the endothelin-1 group was significantly decreased compared with the exosome group(P<0.05).Spinal cord injury was more severe in the endothelin-1 group than that in the exosome group.(2)The expression of endothelin-1 in the model group was significantly increased compared with the sham operation group(P<0.05),and the expression of endothelin-1 in the exosome group was significantly decreased compared with the model group(P<0.05).(3)The blood-spinal cord barrier Evans blue exudate in the exosome group was significantly decreased compared with the model group(P<0.05).The expression levels of the tight junction proteins β-Catenin,Occludin and ZO-1 in the exosome group were increased(P<0.05);the Evans blue exudate in the endothelin-1 group was significantly increased compared with the exosome group(P<0.05).The expression level of tight junction protein was significantly decreased compared with the exosome group(P<0.05).(4)The results show that human umbilical cord mesenchymal cell-derived exosomes protect the permeability of the blood-spinal cord barrier by down-regulating the expression of endothelin-1 and play a role in the repair of spinal cord injury.

16.
Article in Chinese | WPRIM | ID: wpr-1021201

ABSTRACT

BACKGROUND:To investigate the research focus and follow-up research trend of exosomes in the diagnosis and treatment of chronic kidney disease,in order to provide a corresponding reference basis for the future research of exosomes in the diagnosis and treatment of chronic kidney disease,and promote the development of this field. OBJECTIVE:To conduct a bibliometric analysis of relevant studies in each database painstakingly until now for public publication on exosome diagnosis and treatment of chronic kidney disease,to explore the current state and trend of the field in this discipline,and to predict future research directions. METHODS:A computerized search was performed on WanFang,CNKI,CBM,VIP,Web of Science,Cochrane Library,PubMed,and Embase databases from inception to December 2022 for published literature related to the diagnosis and treatment of chronic kidney disease by exosomes.The literature transcripts were screened by NoteExpress for co-occurrence,clustering and mutational analysis among authors,institutions,and keywords through CiteSpace 6.1R4 and VOSviewer software,and the visual knowledge map was plotted. RESULTS AND CONCLUSION:(1)A total of 804 articles,including 133 in Chinese and 671 in English,were included,and the volume of publications climbed year by year with a rapid trend.We included 3 649 literature authors,including 326 Chinese authors and 3 323 English authors,and the field has formed a core team centered on scholars such as Liu Bicheng,Wang Bin,Lyu LinLi,Wang Xiaonan and Wang Haidong,and has formed a stable multicenter collaboration platform among institutions.Research focuses on the three functions of exosomes:carrier,diagnosis and therapy.(2)As a form of extracellular vesicles,exosomes have important mechanisms for carrying,transferring molecular mediators and signal transduction,and have an important role in the physiopathological development of chronic kidney disease,which can provide important health surveillance data for epidemiological studies and clinical decision-making.In recent years,the development of relevant studies on exosome-based diagnosis of chronic kidney disease has expanded dramatically,forming a development layout of collaborative cooperation among multiple institutions worldwide,led by our scientific research institutions.However,at present,the study of the specific function and mechanism of action of exosomes and contents in the disease process has not been fully validated.Their significance for the early diagnosis and prognosis evaluation of chronic kidney disease is not very clear.The intrinsic mechanism of action-related research is still relatively poor.Isolation and purification techniques still need to be improved,and high-quality evidence-based clinical trials with multicenter and large samples have not yet appeared,which still need to be verified by further studies.

17.
Article in Chinese | WPRIM | ID: wpr-1021204

ABSTRACT

BACKGROUND:Mesenchymal stem cells are multipotent stromal cells isolated from bone marrow,fat,umbilical cord and other tissues.It can differentiate into different cell types and secrete a variety of proteins with therapeutic potential,which has a good application prospect in the repair of muscle tissue. OBJECTIVE:To review the research progress of mesenchymal stem cells in promoting muscle tissue repair and provide a theoretical basis for further clinical application. METHODS:Relevant articles published from inception to 2022 were retrieved from CNKI,VIP,WanFang,PubMed,Embase and Web of Science databases.The keywords were"mesenchymal stem cells,muscle tissue,muscle injury,muscle atrophy,exosomes,scaffolds"in Chinese and English.The literature about mesenchymal stem cell migration promoting muscle fiber proliferation and repair was screened.Finally,98 articles were included for review and analysis. RESULTS AND CONCLUSION:(1)The related mechanisms of mesenchymal stem cell migration promoting muscle fiber proliferation and repair are complex,mostly by anti-inflammatory,inhibiting interstitial fibrosis,inhibiting the fat formation and other ways to promote muscle fiber proliferation and repair.(2)The related biological scaffolds and cell co-culture based on mesenchymal stem cells can significantly compensate for the low survival rate of mesenchymal stem cells after colonization.(3)At present,mesenchymal stem cell therapy still has apparent limitations.In the future,mesenchymal stem cells combined with other therapies should become the primary development trend.

18.
Article in Chinese | WPRIM | ID: wpr-1021234

ABSTRACT

BACKGROUND:Extracellular vesicles can regulate insulin resistance and control inflammatory response by participating in intercellular communication,while repairing skeletal muscles and promoting skeletal muscle regeneration,which is expected to be a novel treatment modality for sarcopenic obesity. OBJECTIVE:To review the biogenesis of extracellular vesicles,their biological functions,their relationship with sarcopenic obesity,and recent advances in the pathogenesis,diagnosis,and treatment of sarcopenic obesity. METHODS:The first author performed a computer search of PubMed,Embase,CNKI and other databases for relevant studies involving extracellular vesicle in sarcopenic obesity.The search keywords were"extracellular vesicle,exosome,sarcopenic obesity,obese sarcopenia,skeletal muscle regeneration,skeletal muscle mass regulation"in English and Chinese,respectively.The search period was from June 2022 to November 2022.After screening,87 articles were included for further review. RESULTS AND CONCLUSION:Extracellular vesicles are important vectors of bidirectional cell communication and participate in the regulation of normal physiological and pathological processes through autocrine,paracrine and endocrine ways.Sarcopenic obesity is a complex multi-factor disease.Extracellular vesicles are involved in the occurrence and development of sarcopenic obesity mainly by regulating the inflammatory response of skeletal muscle and the homeostasis of muscle cells.Cytokines secreted by adipose tissue and skeletal muscle are released into the extracellular circulation through extracellular vesicle encapsulation and interact with each other to promote skeletal muscle insulin resistance and lipogenesis,which is the main pathophysiology of skeletal muscle atrophy in sarcopenic obesity.Extracellular vesicles not only promote the development of sarcopenic obesity by providing specific pathogenic markers,but also are a valuable diagnostic indicator of sarcopenic obesity.Release of extracellular vesicles from skeletal muscle during exercise enhances metabolic response and promotes skeletal muscle regeneration.Extracellular vesicles can not only be used as therapeutic targets for sarcopenic obesity but also be used to treat sarcopenic obesity by loading drugs to effectively improve drug bioavailability.

19.
Article in Chinese | WPRIM | ID: wpr-1021239

ABSTRACT

BACKGROUND:A large number of studies have confirmed that exosomes can promote osteogenesis and vascularization.However,simple exosome therapy has problems such as poor targeting,and the content of loaded molecules cannot reach the therapeutic concentration. OBJECTIVE:To load exosomes into injectable gluconolactone-sodium alginate β-tricalcium phosphate-polyethylene glycol hydrogel,and observe the effect of the hydrogel on peri-implant bone defect in vivo and in vitro. METHODS:Exosomes were extracted from bone marrow mesenchymal stem cells and wrapped in injectable gluconolactone-sodium alginate β-tricalcium phosphate-polyethylene glycol hydrogel.(1)In vitro experiment:The hydrogel loaded with exosomes and the hydrogel without exosomes were cocultured with endothelial progenitor cells,and exosomes uptake experiment,tubule formation experiment,cell proliferation,migration ability,and angiogenic gene detection were carried out.(2)In vivo experiment:Twelve male New Zealand white rabbits were used to prepare two standard implant cavities and corresponding bone defects in the long axis of one femur.A hydrogel loaded with exosomes was implanted in the bone defect after an implant was implanted in a cavity at the proximal end of the implant(experimental group),and an unloaded exosome hydrogel was implanted in the bone defect after an implant was implanted in a cavity at the distal end of the implant(control group).At 3,6 and 9 weeks after operation,bone defects with implants were removed and stained with hematoxylin-eosin staining and Masson staining.Simultaneously,osteogenic and angiogenic genes were detected at 9 weeks after operation. RESULTS AND CONCLUSION:(1)In vitro experiment:Exosomes could enter endothelial progenitor cells.The proliferation,migration,angiogenesis and gene(CD31,vascular endothelial growth factor and basic fibroblast growth factor)expression of endothelial progenitor cells in the hydrogel-loaded group were higher than those in the hydrogel-unloaded group(P<0.05).(2)In vivo experiment:Hematoxylin-eosin staining and Masson staining showed that at 3 weeks after operation,only a small amount of new bone was found in the two groups,and the material was partially degraded.At 6 weeks after operation,the amount of new bone in the two groups increased,and a large amount of new bone was found in the experimental group,with obvious calcium deposition.At 9 weeks after operation,compared with the control group,a large number of bone trabeculae thicker than mature were found in the experimental group,calcium salt deposition was more obvious,and a large number of osteoblasts were found around the bone trabeculae.The protein expressions of CD31,vascular endothelial growth factor,basic fibroblast growth factor,bone morphogenetic protein 2,type I collagen and osteocalcin in the experimental group were higher than those in the control group at 9 weeks after operation(P<0.05).(3)The exosome-loaded gluconolactone-sodium alginate β-tricalcium phosphate-polyethylene glycol hydrogel could promote the proliferation,migration and angiogenic differentiation of endothelial progenitor cells and promote the repair and regeneration of bone defects around implants.

20.
Article in Chinese | WPRIM | ID: wpr-1021293

ABSTRACT

BACKGROUND:For the replacement treatment of long-segment tracheal defects,although tissue engineering research has made some progress in recent years,it is still not perfect,and one of the biggest difficulties is that the hemodynamic reconstruction of the tracheal replacement cannot be achieved rapidly. OBJECTIVE:To preliminarily explore the potential of polycaprolactone scaffolds modified with exosome-loaded hydrogels to construct a rapidly vascularized tracheal substitute. METHODS:Exosomes were extracted from bone marrow mesenchymal stem cells of SD rats.After preparation of hyaluronic acid methacrylate solution,the exosome solution was mixed with hyaluronic acid methacrylate solution at a volume ratio of 1:1.Hyaluronic acid methacrylate hydrogels loaded with exosomes were prepared under ultraviolet irradiation for 5 minutes.The degradation of exosome-unloaded hydrogels and the controlled release of exosome-loaded hydrogels were detected.Polycaprolactone scaffolds were prepared by 3D printing.The pure hyaluronic acid methacrylate solution and the exosome-loaded hyaluronic acid methacrylate solution were respectively added to the surface of the scaffold.Hydrogel-modified scaffolds and exosome-modified scaffolds were obtained after ultraviolet irradiation.Thirty SD rats were randomly divided into three groups with 10 rats in each group and subcutaneously implanted with simple scaffolds,hydrogel-modified scaffolds and exosome-modified scaffolds,respectively.At 30 days after surgery,the scaffolds and surrounding tissues of each group were removed.Neovascularization was observed by hematoxylin-eosin staining and Masson staining and the expression of CD31 was detected by immunofluorescence. RESULTS AND CONCLUSION:(1)As time went by,the hydrogel degraded gradually,and the exosomes enclosed in the hydrogel were gradually released,which could be sustained for more than 30 days.The exosome release rate was faster than the degradation rate of the hydrogel itself,and nearly 20%of the exosomes were still not released after 30 days of soaking.(2)Under a scanning electron microscope,the surface of the simple polycaprolactone scaffold was rough.After hydrogel modification,a layer of gel was covered between the pores of the scaffold,and the scaffold surface became smooth and dense.(3)After 30 days of subcutaneous embedding,hematoxylin-eosin staining and Masson staining showed that more neovascularization was observed inside the scaffolds of the exosome-modified scaffold group compared with the hydrogel-modified scaffold group.The hydrogels on the scaffolds of the two groups were not completely degraded.Immunofluorescence staining showed that CD31 expression in the exosome-modified scaffold group was higher than that in the hydrogel-modified scaffold group(P<0.000 1).(4)These results indicate that hyaluronic acid methacrylate hydrogels can be used as controlled-release carriers for exosomes.The 3D-printed polycaprolactone scaffold modified by hyaluronic acid methacrylate hydrogel loaded with exosomes has good biocompatibility and has the potential to promote the formation of neovascularization.

SELECTION OF CITATIONS
SEARCH DETAIL