Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. arch. biol. technol ; 65: e22210322, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1364443

ABSTRACT

Abstract Covid-19 is today's pandemic disease and can cause the hospital crowded. Additionally, It affects the lungs and may cause pneumonia. The most popular technique for diagnosis of pneumonia is the evaluation of X-ray. However, a sufficient number of radiologists are needed to interpret the X-ray images. High rates of child deaths due to pneumonia have been encountered. Using this type of system, a diagnosis can be made quickly, and then the treatment process can be started rapidly. This study aims to diagnose pneumonia using boosting techniques by the automatic tool. With this tool, the workload of the doctors/radiologists is reduced. The boosting techniques are a family of machine learning techniques. Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Categorical Boosting (CatBoost) are used for the study. These techniques are chosen because of their simulation duration for modeling and convenience for real-time applications. L2 normalization and feature selection are applied to the data before applying the techniques. Random Forest Classifier is used for feature selection estimator. After the modeling, Categorical Boosting algorithm is observed as faster than the other techniques. Simulation duration is obtained as 0.7 seconds. By using this automatic tool, the user can be able to upload the desired X-ray image to the system and get the result easily from the screen without any radiologist/doctor.

2.
Journal of Biomedical Engineering ; (6): 249-256, 2021.
Article in Chinese | WPRIM | ID: wpr-879272

ABSTRACT

The peak period of cardiovascular disease (CVD) is around the time of awakening in the morning, which may be related to the surge of sympathetic activity at the end of nocturnal sleep. This paper chose 140 participants as study object, 70 of which had occurred CVD events while the rest hadn't during a two-year follow-up period. A two-layer model was proposed to investigate whether hypnopompic heart rate variability (HRV) was informative to distinguish these two types of participants. In the proposed model, the extreme gradient boosting algorithm (XGBoost) was used to construct a classifier in the first layer. By evaluating the feature importance of the classifier, those features with larger importance were fed into the second layer to construct the final classifier. Three machine learning algorithms, i.e., XGBoost, random forest and support vector machine were employed and compared in the second layer to find out which one can achieve the highest performance. The results showed that, with the analysis of hypnopompic HRV, the XGBoost+XGBoost model achieved the best performance with an accuracy of 84.3%. Compared with conventional time-domain and frequency-domain features, those features derived from nonlinear dynamic analysis were more important to the model. Especially, modified permutation entropy at scale 1 and sample entropy at scale 3 were relatively important. This study might have significance for the prevention and diagnosis of CVD, as well as for the design of CVD-risk assessment system.


Subject(s)
Humans , Algorithms , Cardiovascular Diseases , Heart Rate , Machine Learning , Sleep
3.
Journal of Biomedical Engineering ; (6): 10-20, 2021.
Article in Chinese | WPRIM | ID: wpr-879244

ABSTRACT

Heart sound is one of the common medical signals for diagnosing cardiovascular diseases. This paper studies the binary classification between normal or abnormal heart sounds, and proposes a heart sound classification algorithm based on the joint decision of extreme gradient boosting (XGBoost) and deep neural network, achieving a further improvement in feature extraction and model accuracy. First, the preprocessed heart sound recordings are segmented into four status, and five categories of features are extracted from the signals based on segmentation. The first four categories of features are sieved through recursive feature elimination, which is used as the input of the XGBoost classifier. The last category is the Mel-frequency cepstral coefficient (MFCC), which is used as the input of long short-term memory network (LSTM). Considering the imbalance of the data set, these two classifiers are both improved with weights. Finally, the heterogeneous integrated decision method is adopted to obtain the prediction. The algorithm was applied to the open heart sound database of the PhysioNet Computing in Cardiology(CINC) Challenge in 2016 on the PhysioNet website, to test the sensitivity, specificity, modified accuracy and F score. The results were 93%, 89.4%, 91.2% and 91.3% respectively. Compared with the results of machine learning, convolutional neural networks (CNN) and other methods used by other researchers, the accuracy and sensibility have been obviously improved, which proves that the method in this paper could effectively improve the accuracy of heart sound signal classification, and has great potential in the clinical auxiliary diagnosis application of some cardiovascular diseases.


Subject(s)
Algorithms , Databases, Factual , Heart Sounds , Neural Networks, Computer
4.
Journal of Preventive Medicine ; (12): 762-767, 2021.
Article in Chinese | WPRIM | ID: wpr-886491

ABSTRACT

Objective@#To compare the effects of Cox proportional hazard regression model (Cox model) and extreme gradient boosting model ( XGBoost model ) on the prediction of the mortality of acute paraquat poisoning (APP).@*Methods@#The APP cases admitted to Qingdao Eighth People's Hospital and Shandong Provincial Hospital from January 1st of 2018 to December 1st of 2020 was recruited and divided into a training group and a verification group by a random number table. The Cox model and XGBoost model were established to select the predictors for APP mortality. Receiver operating characteristic ( ROC ) curve was drawn to analyze the predictive power of the two models, and the calibration was evaluated using Hosmer-Lemeshow test.@*Results@#Totally 150 APP cases were recruited. There were 75 cases each in the training group and in the verification group, with 52 and 55 cases died respectively, accounting for 69.33% and 73.33%. The Cox model showed that paraquat intake, the time from taking poison to seeing a doctor, the time for the first perfusion, the time for the first vomiting, aspartate aminotransferase, alanine aminotransferase, serum creatinine, blood urea nitrogen, white blood cell, lactic acid, creatine kinase isoenzymes, glucose, serum calcium and serum potassium were the predictors of APP mortality ( all P<0.05 ). The XGboost model showed that the predictive power of the factors in a descending order were the time from taking poison to seeing a doctor, the time for the first vomiting, the time for the first perfusion, lactic acid, white blood cell, paraquat intake, serum creatinine, serum potassium, serum calcium, creatine kinase isoenzymes, glucose, aspartate aminotransferase, blood urea nitrogen and alanine aminotransferase. The area under curve ( AUC ) of the XGBoost model for predicting was 0.972, which was greater than 0.921 of the Cox model ( P<0.05 ). The predicted results of the Cox model and XGBoost model were consistent with the actual situation ( P>0.05 ). @*Conclusion@#The Cox model and XGBoost model are consistent in predicting the mortality of APP, but the latter is better.

SELECTION OF CITATIONS
SEARCH DETAIL