Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.486
Filter
1.
Acta Anatomica Sinica ; (6): 88-97, 2024.
Article in Chinese | WPRIM | ID: wpr-1015151

ABSTRACT

Objective To study the stress change characteristics of the cervical disc after removing different ranges of the uncinate process by establishing a three⁃dimensional finite element model of the C

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 188-195, 2024.
Article in Chinese | WPRIM | ID: wpr-1006520

ABSTRACT

Objective@#To explore the effect of different miniscrew placement heights on the distribution of biological forces produced by clear aligner combined with intramaxillary traction for mandibular molar distalization, to identify the miniscrew location that is conducive to the protection of lower anterior tooth anchorage and to provide a reference that can be used when designing clinical treatments.@*Methods@#Mimics, GeomagicStudio 2017, SolidWorks 2016, and Ansys workbench were used to establish finite element analysis models and perform mechanical analysis under the following six working conditions: working condition 1 was the control group without miniscrews; working conditions 2 to 5 had miniscrew in the buccal bone cortex between the first and second molars of the lower jaw 10 mm, 7 mm, 4 mm, and 1 mm from the top of the alveolar crest, respectively; working condition 6 had the miniscrew in the center of the buccal tongue at the anterior edge of the ascending branch of the lower jaw 5 mm above the occlusal plane.@*Results@#On the sagittal axis, miniscrew anchorage caused distal displacement of all teeth. Compared to the control group, in the miniscrew group, the displacement of the anterior molars exceeded that of the second molars. On the vertical axis, the result in the control group was similar to backward bending; the results in the miniscrew groups resembled the effect of a lever, lowering the lateral incisors and canines and raising the central incisors and first premolars. On the coronal axis, the second premolars and the first molars showed lingual displacement in the control group, and only the premolars and first molars showed lingual displacementin the miniscrew groups. The canines were the teeth that were most strongly affected by the change in miniscrew placement height.@*Conclusion@#The higher the miniscrew position is, the stronger the protective effect on the anterior anchorage. According to the miniscrew placement height, the mandibular arch should be properly narrowed, the central incisors and first premolars should be lowered, and the lateral incisors and canines should be raised when designing clinical treatments.

3.
International Eye Science ; (12): 62-66, 2024.
Article in Chinese | WPRIM | ID: wpr-1003507

ABSTRACT

The finite element method(FEM)is a widely employed mathematical technique in mechanical research that divides an object into discrete and interacting finite elements. Medically, finite element analysis(FEA)enables the simulation of biomechanical experiments that are challenging to conduct. Orbital surgery poses significant challenges to ophthalmologists due to its inherent difficulty and steep learning curve. FEM enables the simulation and analysis of the mechanical properties of orbital tissue, offering a novel approach for diagnosing and treating orbital-related diseases. With technological advancements, FEM has significantly matured in the diagnosis and treatment of orbital diseases, becoming a popular area of research in orbital biomechanics. This paper reviewed the latest advancements in orbital FEM, encompassing the development of orbital FEA models, simulation of orbital structure, and its application in orbital-related diseases. Additionally, the limitations of FEM and future research directions are also discussed. As a digital tool for auxiliary diagnosis and treatment, orbital FEA will progressively unlock its potential for diagnosing and treating orbital diseases alongside technological advancements.

4.
China Journal of Orthopaedics and Traumatology ; (12): 57-60, 2024.
Article in Chinese | WPRIM | ID: wpr-1009223

ABSTRACT

OBJECTIVE@#To compare the biomechanical stability of three cross-bridge headless compression screws and locking plates in the fixation of Mason type Ⅲ radial head fractures by finite element method.@*METHODS@#Using reverse modeling technology, the radial CT data and internal fixation data of a healthy 25-year-old male were imported into the relevant software. Three-dimensional finite element model of 3 cross-bridge headless compression screws and locking plates for MasonⅢ radial head fractures were established, and the radial head was loaded with 100 N axial loading. The maximum displacement, maximum Von Mises stress and stress distribution of the two groups were compared.@*RESULTS@#The maximum displacements of the three cross-bridge screws group and locking plate group were 0.069 mm and 0.087 mm respectively, and the Von Mises stress peaks were 18.59 MPa and 31.85 MPa respectively. The stress distribution of the three screws group was more uniform.@*CONCLUSION@#Both internal fixation methods can provide good fixation effect. CoMPared with the locking plate fixation method, the 3 cross-bridge headless compression screws fixation is more stable and the stress distribution is more uniform.


Subject(s)
Male , Humans , Adult , Finite Element Analysis , Radial Head and Neck Fractures , Bone Screws , Biomechanical Phenomena , Radius Fractures/surgery , Fracture Fixation, Internal/methods , Bone Plates , Fractures, Comminuted
5.
Dental press j. orthod. (Impr.) ; 29(1): e2423195, 2024. tab, graf
Article in English | LILACS-Express | LILACS, BBO | ID: biblio-1534312

ABSTRACT

ABSTRACT Introduction: Surgically assisted rapid palatal expansion (SARPE) has been the treatment of choice in subjects presenting skeletally mature sutures. Objective: The purpose of this study was to analyze stress distribution and displacement of the craniofacial and dentoalveolar structures resulting from three types of palatal expanders with surgical assistance using a non-linear finite element analysis. Material and Methods: Three different palatal expanders were designed: Model-I (tooth-bone-borne type containing four miniscrews), Model-II (tooth-bone-borne type containing two miniscrews), and Model-III (bone-borne type containing four miniscrews). A Le Fort I osteotomy was performed, and a total of 5.0 mm palatal expansion was simulated. Nonlinear analysis (three theory) method (geometric nonlinear theory, nonlinear contact theory, and nonlinear material methods) was used to evaluate stress and displacement of several craniofacial and dentoalveolar structures. Results: Regardless of the maxillary expander device type, surgically assisted rapid palatal expansion produces greater anterior maxillary expansion than posterior (ANS ranged from 2.675 mm to 3.444 mm, and PNS ranged from 0.522 mm to 1.721 mm); Model-I showed more parallel midpalatal suture opening pattern - PNS/ANS equal to 54%. In regards to ANS, Model-II (1.159 mm) and Model-III (1.000 mm) presented larger downward displacement than Model-I (0.343 mm). PNS displaced anteriorly more than ANS for all devices; Model-III presented the largest amount of forward displacement for PNS (1.147 mm) and ANS (1.064 mm). All three type of expanders showed similar dental displacement, and minimal craniofacial sutures separation. As expected, different maxillary expander designs produce different primary areas and levels of stresses (the bone-borne expander presented minimal stress at the teeth and the tooth-bone-borne expander with two miniscrews presented the highest). Conclusions: Based on this finite element method/finite element analysis, the results showed that different maxillary expander designs produce different primary areas and levels of stresses, minimal displacement of the craniofacial sutures, and different skeletal V-shape expansion.


RESUMO Introdução: A expansão rápida da maxila assistida cirurgicamente (ERMAC) tem sido o tratamento de escolha em indivíduos que apresentam suturas esqueleticamente maduras. Objetivo: O objetivo deste estudo foi avaliar, utilizando uma análise não linear com elementos finitos, a distribuição de tensões e os deslocamentos das estruturas craniofaciais e dentoalveolares gerados por três tipos de expansores palatinos usados na ERMAC. Material e Métodos: Três tipos de expansores palatinos foram projetados: Modelo I (dento-osseossuportado com quatro mini-implantes), Modelo II (dento-osseossuportado com dois mini-implantes) e Modelo III (osseossuportado com quatro mini-implantes). Uma osteotomia Le Fort I foi realizada e foi simulada uma expansão palatina total de 5,0 mm. Um método de análise não linear (três teorias - teoria da não-linearidade geométrica, teoria do contato não linear e métodos para materiais não lineares) foi utilizado para avaliar a tensão e o deslocamento de diversas estruturas craniofaciais e dentoalveolares. Resultados: Independentemente do tipo de aparelho expansor palatino, a ERMAC produziu maior expansão anterior da maxila do que posterior (ENA variou de 2,675 mm a 3,444 mm e ENP variou de 0,522 mm a 1,721 mm); o Modelo I apresentou padrão de abertura mais paralela da sutura palatina mediana, com ENP/ENA igual a 54%. Com relação à ENA, o Modelo II (1,159 mm) e o Modelo III (1,000 mm) apresentaram maior deslocamento para baixo do que o Modelo I (0,343 mm). A ENP deslocou-se mais para anterior do que a ENA com todos os aparelhos; o Modelo III apresentou o maior deslocamento para anterior da ENP (1,147 mm) e da ENA (1,064 mm). Os três tipos de expansores apresentaram deslocamento dentário semelhante e separação mínima das suturas craniofaciais. Como esperado, diferentes designs de expansores palatinos produzem diferentes áreas primárias e níveis de tensões (o expansor osseossuportado apresentou tensão mínima nos dentes, e o expansor dento-osseossuportado com dois mini-implantes apresentou o maior). Conclusões: Com base nesse estudo de elementos finitos, os resultados mostraram que diferentes designs de expansores palatinos produzem diferentes áreas primárias e níveis de tensão, com deslocamento mínimo das suturas craniofaciais e diferentes expansões esqueléticas em forma de V.

6.
Braz. dent. sci ; 27(2): 1-12, 2024. ilus, tab
Article in Portuguese | LILACS, BBO | ID: biblio-1551332

ABSTRACT

Objective: In response to the demand for dental implants, extensive research has been conducted on methods for transferring load to the surrounding bone. This study aimed to evaluate the stresses on the peripheral bone, implants, and prostheses under scenarios involving of the following variables: prosthesis designs, vertical bone heights, load angles, and restorative materials. Material and Methods: Three implants were inserted in the premolar and molar regions (5-6-7) of the two mandibular models. Model 1 represented 0 mm marginal bone loss and Model 2 simulated 3 mm bone loss. CAD/CAM-supported materials, hybrid ceramic (HC), resin-nano ceramic (RNC), lithium disilicate (LiSi), zirconia (Zr), and two prosthesis designs (splinted and non-splinted) were used for the implant-supported crowns. Forces were applied vertically (90°) to the central fossa and buccal cusps and obliquely (30°) to the buccal cusps only. The stresses were evaluated using a three-dimensional Finite Element Analysis. Results: Oblique loading resulted in the highest stress values. Of the four materials, RNC showed the low stress in the restoration, particularly in the marginal area. The use of different restorative materials did not affect stress distribution in the surrounding bone. The splinted prostheses generated lower stress magnitude on the bone, and while more stress on the implants were observed. Conclusion: In terms of the stress distribution on the peri-implant bone and implants, the use of different restorative materials is not important. Oblique loading resulted in higher stress values, and the splinted prosthesis design resulted in lower stress (AU)


Objetivo: Em resposta à demanda por implantes dentários, extensa pesquisa foi realizada sobre métodos para transferir carga ao osso circundante. Este estudo buscou avaliar os estresses no osso periférico, implantes e próteses em cenários que envolvem as seguintes variáveis: designs de próteses, alturas ósseas verticais, ângulos de carga e materiais restauradores. Material e Métodos: Três implantes foram inseridos nas regiões dos pré-molares e molares (5-6-7) de dois modelos de mandíbula. O Modelo 1 representou perda óssea marginal de 0 mm e o Modelo 2 simulou perda óssea de 3 mm. Materiais suportados por CAD/CAM, cerâmica híbrida (HC), cerâmica nano-resina (RNC), dissilicato de lítio (LiSi), zircônia (Zr) e dois designs de próteses (sintetizadas e não-sintetizadas) foram utilizados para as coroas suportadas por implantes. Forças foram aplicadas verticalmente (90°) à fossa central e cúspides bucais e obliquamente (30°) apenas às cúspides bucais. Os estresses foram avaliados usando Análise de Elementos Finitos tridimensional. Resultados: Cargas oblíquas resultaram nos valores mais altos de estresse. Entre os quatro materiais, RNC mostrou baixo estresse na restauração, especialmente na área marginal. O uso de diferentes materiais restauradores não afetou a distribuição de estresse no osso circundante. Próteses sintetizadas geraram menor magnitude de estresse no osso, enquanto mais estresse nos implantes foi observado. Conclusão: Em termos de distribuição de estresse no osso peri-implantar e implantes, o uso de diferentes materiais restauradores não é crucial. Cargas oblíquas resultaram em valores mais altos de estresse, e o design de prótese sintetizada resultou em menor estresse. (AU)


Subject(s)
Dental Implants , Dental Prosthesis , Finite Element Analysis , Biomechanical Phenomena
7.
São José dos Campos; s.n; 2024. 81 p. ilus, tab.
Thesis in Portuguese | LILACS, BBO | ID: biblio-1552084

ABSTRACT

O objetivo deste estudo foi avaliar o comportamento biomecânico através da resistência à fadiga e análise por elementos finitos de coroas bioinspiradas bilaminadas com infraestruturas modificadas na superfície vestibular (Estudo A) e utilizando diferentes materiais cerâmicos com módulos elásticos distintos (Estudo B). Para isso, foram confeccionados 90 preparos para coroa total em resina epóxi G10, sobre os quais foram preparadas coroas bioinspiradas de acordo com os seguintes grupos: Estudo A - IC (infraestrutura convencional), IME (infraestrutura modificada estratificada) e IMC (infraestrutura modificada cimentada), todas confeccionadas em dissilicato de lítio (infraestrutura) + porcelana (recobrimento); Estudo B ­ DL+LEU (dissilicato de lítio + leucita), LEU+DL (leucita + dissilicato de lítio), CH+DL (cerâmica híbrida + dissilicato de lítio) e CH+LEU (cerâmica híbrida + leucita). Para o Estudo A, todas as infraestruturas foram usinadas; os recobrimentos dos grupos IC e IME foram confeccionados através da estratificação, e os recobrimentos do grupo IMC foram usinados. Já para o Estudo B, todas as peças foram usinadas, de acordo com o material cerâmico de cada grupo. Em seguida, foi realizada a cimentação adesiva dos recobrimentos sobre as infraestruturas (a depender do grupo) e das coroas sobre os preparos utilizando cimento resinoso fotopolimerizável (Variolink Esthetic LC). Após a cimentação, os espécimes foram submetidos ao teste de fadiga cíclica (10.000 ciclos, 20Hz), e como desfecho foram considerados dois eventos, em que o primeiro foi a ocorrência de trinca e/ou lascamento (evento 1) e o segundo foi a falha catastrófica do conjunto (evento 2). Os valores de carga e número de ciclos para falha em que foram observados os eventos 1 e 2 foram utilizados para realizar a análise de sobrevivência de acordo com Kaplan-Meier e Log-Rank (Mantel-Cox; 95%). As marcas de fratura e o modo de falha das coroas foram avaliados e classificados por estereomicroscópio óptico e microscópio eletrônico de varredura. Por fim, foi realizada análise por elementos finitos (FEA) para ambos os estudos, a fim de avaliar a distribuição de tensões sobre as coroas e interface adesiva. Para o Estudo A, os resultados do teste de fadiga mostraram que, considerando o evento 1 (trinca/lascamento), os grupos IC e IMC apresentaram médias de carga fadiga estatisticamente significantes entre si (733,33 N e 913,33 N, respectivamente), enquanto o grupo IME apresentou média superior (1.020 N). O mesmo foi observado para o número de ciclos em fadiga para todos os grupos. Ao considerar o evento 2 (falha catastrófica), os três grupos apresentaram médias estatisticamente semelhantes entre si (~1.028 N). Os resultados de FEA mostraram que o grupo IC concentrou maior tensão de tração do que os grupos IME e IMC. Para o Estudo B, no teste de fadiga, o grupo DL+LEU apresentou a maior média de resistência à fadiga (evento 1: 913,33 N e evento 2: 1033,33 N), enquanto todas as outras combinações de materiais cerâmicos analisadas foram estatisticamente semelhantes entre si, considerando carga e número de ciclos. Com relação ao FEA, os grupos com cerâmica híbrida (CH+DL e CH+LEU) apresentaram menores picos de concentração de tensão na infraestrutura do que os grupos com cerâmicas vítreas (DL+LEU e LEU+DL), porém, em contrapartida, concentraram maior tensão na interface adesiva. Com isso, conclui-se que a utilização da infraestrutura modificada é uma alternativa viável e promissora para tratamentos reabilitadores, apresentando sobrevivência em fadiga e distribuição de tensões satisfatórias. Além disso, a combinação entre uma infraestrutura de dissilicato de lítio e recobrimento de cerâmica a base de leucita corresponde a melhor abordagem considerando a infraestrutura modificada.(AU)


The objective of this study was to evaluate the biomechanical behavior through fatigue resistance and finite element analysis of bilaminar bioinspired crowns with modified infrastructures on the buccal surface (Study A) and using different ceramic materials with different elastic moduli (Study B). For this, 90 preparations were made for a full crown in G10 epoxy resin, on which bioinspired crowns were prepared according to the following groups: Study A - CI (conventional infrastructure), SMI (stratified modified infrastructure) and CMI (cemented modified infrastructure ), all made of lithium disilicate (infrastructure) + porcelain (veneer); Study B ­ LD+LEU (lithium disilicate + leucite), LEU+LD (leucite + lithium disilicate), HC+LD (hybrid ceramic + lithium disilicate) and HC+LEU (hybrid ceramic + leucite). For Study A, all infrastructures were machined; the coverings of the CI and SMI groups were made through stratification technique, and the veneers of the SMI group were machined. For Study B, all pieces were machined, according to the ceramic material of each group. Then, the veneers were cemented into their infrastructures (depending on the group) and crowns were cemented into preparations using light-cured resin cement (Variolink Esthetic LC). After cementing, the specimens were subjected to the cyclic fatigue test (10,000 cycles, 20Hz), and as an outcome two events were considered: the occurrence of cracking and/or chipping (event 1) and catastrophic failure (event 2). The load (N) and number of cycles to failure in which events 1 and 2 were observed were used to perform the survival analysis according to Kaplan-Meier and Log-Rank (Mantel- Cox; 95%). The fracture marks and failure mode of the crowns were evaluated and classified by optical stereomicroscope and scanning electron microscope. Finally, finite element analysis (FEA) was performed for both studies in order to evaluate the stress distribution over the crowns and adhesive interface. For Study A, the results of the fatigue test showed that, considering event 1 (cracking/chipping), the CI and CMI groups presented average to failure that were statistically significant compared to each other (733.33 N and 913.33 N, respectively), while the SMI group showed higher averages (1,020 N). Same pattern was observed for the number of cycles under fatigue for both groups. When considering event 2 (catastrophic failure), the three groups presented statistically similar means (~1,028 N). The FEA results showed that the CI group concentrated greater tensile stress than the CMI and SMI groups. For Study B, in the fatigue test, the LC+LEU group presented the highest average fatigue resistance (event 1: 913.33 N and event 2: 1033.33 N), while all other combinations of ceramic materials analyzed were statistically similar to each other, considering load and number of cycles. Regarding FEA, the groups with hybrid ceramics (HC+LC and HC+LEU) showed lower stress concentration peaks in the infrastructure than the groups with glass ceramics (LC+LEU and LEU+LC), however, on the other hand, concentrated greater tension at the adhesive interface. With this, it is concluded that the use of modified infrastructure is a viable and promising alternative for oral rehabilitation treatments, presenting satisfactory fatigue survival and adequate stress distribution. Furthermore, the combination of a lithium disilicate infrastructure and a leucite-based ceramic coating corresponds to the best approach considering the modified infrastructure.(AU)


Subject(s)
Ceramics , Finite Element Analysis , Biomimetics , Denture, Partial, Fixed , Fatigue
8.
Rev. cir. traumatol. buco-maxilo-fac ; 23(2): 17-25, abr./jun 2023. ilus
Article in Portuguese | LILACS, BBO | ID: biblio-1537357

ABSTRACT

Introdução: A osteotomia Le Fort I possibilita a correção de deformidades dentofaciais que envolvem o terço médio da face. Para sua fixação, convencionou-se o emprego de quatro mini-placas nos pilares zigomático-maxilar e nasomaxilar. Propôs-se então, a dispensa da fixação do segmento posterior, surgindo questionamentos relacionados à capacidade biomecânica do sistema. Objetivos: Comparar o estresse biomecânico gerado em três meios distintos de fixação da osteotomia Le Fort I frente ao movimento de avanço sagital linear maxilar de 7mm. Metodologia: Trata-se de uma pesquisa experimental laboratorial, utilizando-se da análise de elementos finitos como ferramenta analítica, a fim de constatar qual das técnicas sofrerá maior estresse biomecânico. Resultados: Constatou-se que o estresse biomecânico gerado é maior quando aplicado em 4 pontos do que quando aplicado em apenas 2 pontos. Conclusão: Os resultados obtidos fornecem informações aos cirurgiões sobre a real necessidade do uso de fixação adicional de acordo com o método de fixação planejado. No entanto, deve ser interpretado de forma cautelosa, considerando-se as limitações deste estudo. Sendo assim, uma análise incipiente, que tem como intuito o fornecimento de evidência científica de grande significância.


Introducción: La osteotomía Le Fort I permite la corrección de deformidades dentofaciales que involucran el tercio medio de la cara. Para su fijación se acordó utilizar cuatro miniplacas en los pilares cigomaticomaxilar y nasomaxilar. Entonces se propuso prescindir de la fijación del segmento posterior, planteando interrogantes relacionados con la capacidad biomecánica del sistema. Objetivos: Comparar el estrés biomecánico generado en tres medios diferentes de fijación de la osteotomía Le Fort I frente a un movimiento de avance sagital lineal maxilar de 7mm. Metodología: Se trata de una investigación experimental de laboratorio, utilizando como herramienta analítica el análisis de elementos finitos, con el fin de comprobar cuál de las técnicas sufrirá un mayor estrés biomecánico. Resultados: Se encontró que el estrés biomecánico generado es mayor cuando se aplica en 4 puntos que cuando se aplica solo en 2 puntos. Conclusión: Los resultados obtenidos brindan información a los cirujanos sobre la necesidad real de utilizar fijación adicional de acuerdo al método de fijación planificado. Sin embargo, debe interpretarse con cautela, considerando las limitaciones de este estudio. Por tanto, un análisis incipiente, que pretende aportar evidencias científicas de gran trascendencia.


Introduction: The Le Fort I osteotomy allows the correction of dentofacial deformities involving the middle third of the face. For its fixation, it was agreed to use four mini plates on the zygomaticomaxillary and nasomaxillary pillars. It was then proposed to dispense with the fixation of the posterior segment, raising questions related to the biomechanical capacity of the system. Objectives: To compare the biomechanical stress generated in three different means of fixation of the Le Fort I osteotomy against a 7mm maxillary linear sagittal advancement movement. Methodology: This is an experimental laboratory research, using finite element analysis as an analytical tool, in order to verify which of the techniques will suffer greater biomechanical stress. Results: It was found that the biomechanical stress generated is greater when applied to 4 points than when applied to only 2 points. Conclusion: The results obtained provide information to surgeons about the real need to use additional fixation according to the planned fixation method. However, it should be interpreted with caution, considering the limitations of this study. Therefore, an incipient analysis, which aims to provide scientific evidence of great significance.


Subject(s)
Osteotomy, Le Fort , Finite Element Analysis , Orthognathic Surgery , Fracture Fixation, Internal
9.
Int. j. morphol ; 41(5): 1288-1296, oct. 2023. ilus, tab
Article in Spanish | LILACS | ID: biblio-1521049

ABSTRACT

El propósito de este estudio fue analizar el comportamiento mecánico de la estructura dental sana de un primer premolar inferior humano sometido a fuerzas funcionales y disfuncionales en diferentes direcciones. Se buscó comprender, bajo las variables contempladas, las zonas de concentración de esfuerzos que conllevan al daño estructural de sus constituyentes y tejidos adyacentes. Se realizó el modelo 3D de la reconstrucción de un archivo TAC de un primer premolar inferior, que incluyó esmalte, dentina, ligamento periodontal y hueso alveolar considerando tres variables: dirección, magnitud y área de la fuerza aplicada. La dirección fue dirigida en tres vectores (vertical, tangencial y horizontal) bajo cuatro magnitudes, una funcional de 35 N y tres disfuncionales de 170, 310 y 445 N, aplicadas sobre un área de la cara oclusal y/o vestibular del premolar que involucró tres contactos estabilizadores (A, B y C) y dos paradores de cierre. Los resultados obtenidos explican el fenómeno de combinar tres vectores, cuatro magnitudes y un área de aplicación de la fuerza, donde los valores de esfuerzo efectivo equivalente Von Mises muestran valores máximos a partir de los 60 MPa. Los valores de tensión máximos se localizan, bajo la carga horizontal a 170 N y en el proceso masticatorio en la zona cervical, cuando la fuerza pasa del 60 %. Sobre la base de los hallazgos de este estudio, se puede concluir que la reacción de los tejidos a fuerzas funcionales y disfuncionales varía de acuerdo con la magnitud, dirección y área de aplicación de la fuerza. Los valores de tensión resultan ser más altos bajo la aplicación de fuerzas disfuncionales tanto en magnitud como en dirección, produciendo esfuerzos tensiles significativos para la estructura dental y periodontal cervical, mientras que, bajo las cargas funcionales aplicadas en cualquier dirección, no se generan esfuerzos lesivos. Esto supone el reconocimiento del poder de detrimento estructural del diente y periodonto frente al bruxismo céntrico y excéntrico.


SUMMARY: The purpose of this study was to analyze the mechanical behavior of the healthy dental structure of a human mandibular first premolar subjected to functional and dysfunctional forces in different directions. It was sought to understand, under the contemplated variables, the areas of stress concentration that lead to structural damage of its constituents and adjacent tissues. The 3D model of the reconstruction of a CT file of a lower first premolar was made, which included enamel, dentin, periodontal ligament and alveolar bone considering three variables: direction, magnitude and area of the applied force. The direction was directed in three vectors (vertical, tangential and horizontal) under four magnitudes, one functional of 35 N and three dysfunctional of 170, 310 and 445 N, applied to an area of the occlusal and/or buccal face of the premolar that involved three stabilizing contacts (A, B and C) and two closing stops. The results obtained explain the phenomenon of combining three vectors, four magnitudes and an area of force application, where the values of effective equivalent Von Mises stress show maximum values from 60 MPa. The maximum tension values are located under the horizontal load at 170 N and in the masticatory process in the cervical area, when the force exceeds 60%. Based on the findings of this study, it can be concluded that the reaction of tissues to functional and dysfunctional forces varies according to the magnitude, direction, and area of application of the force. The stress values turn out to be higher under the application of dysfunctional forces both in magnitude and in direction, producing significant tensile stresses for the dental and cervical periodontal structure, while under functional loads applied in any direction, no damaging stresses are generated. This supposes the recognition of the power of structural detriment of the tooth and periodontium against centric and eccentric bruxism.


Subject(s)
Humans , Bicuspid/physiology , Biomechanical Phenomena , Finite Element Analysis , Tooth/physiology , Bite Force , Bruxism/physiopathology , Elastic Modulus , Tooth Wear , Mastication/physiology
10.
Kinesiologia ; 42(2): 127-131, 20230615.
Article in Spanish, English | LILACS-Express | LILACS | ID: biblio-1552472

ABSTRACT

Objetivo. Analizar el rendimiento biomecánico de las placas de tibia proximal utilizadas en fracturas de platillos tibiales evaluado a través de modelos de elementos finitos. Métodos. Se realizará una búsqueda exhaustiva en PubMed/Medline, Embase, Lilacs, Web of Science y Google Scholar. No se utilizará ninguna restricción de idioma o estado de publicación. Dos revisores examinarán de forma independiente los posibles artículos elegibles, de acuerdo con los criterios de selección predefinidos. Se incluirán los estudios que evalúen el rendimiento de los platillos tibiales proximales utilizados en las fracturas del platillo tibial evaluadas mediante el análisis de elementos finitos. La extracción de datos sobre las características del estudio, los métodos, los resultados y la evaluación del riesgo de sesgo se realizará mediante un formulario estandarizado. Considerando el diseño de estudio no se requiere evaluación por comité de ética. Los resultados de esta revisión se difundirán a través de la publicación en revistas revisadas por pares, redes sociales y congresos de la especialidad. Se espera que los resultados de esta revisión permitan optimizar los resultados del manejo quirúrgico de las fracturas de platillos tibiales. Número de registro PROSPERO: CRD42023396015.


Objetive. To analyze the biomechanical performance of proximal tibial plates used in tibial plate fractures evaluated through finite element modeling. Methods. A comprehensive search will be conducted in PubMed/Medline, Embase, Lilacs, Web of Science, and Google Scholar. No language or publication status restrictions will be used. Two reviewers will independently review potential eligible articles according to predefined selection criteria. Studies evaluating the performance of proximal tibial splints used in tibial splint fractures assessed by finite element analysis will be included. Data extraction on study characteristics, methods, results, and risk of bias assessment will be performed using a standardized form. Considering the study design, evaluation by an ethics committee is not required. The results of this review will be disseminated through publication in peer-reviewed journals, social networks and specialty congresses. It is expected that the results of this review will allow optimizing the results of the surgical management of tibial plate fractures. PROSPERO registration number: CRD42023396015.

11.
Int. j. odontostomatol. (Print) ; 17(2): 174-185, jun. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1440356

ABSTRACT

This in silico study aimed to evaluate the biomechanical behavior of a full-arch implant-supported prosthesis on titanium and zirconia monotype implants. A 3D mandible containing 1.0 mm thick cortical and cancellous bone was modeled. Four dental implants (3.3 x 10 mm) were inserted into the jaw model in each model. The implants consisted of Titanium (Ti-S group) and Zirconia Monotype/one-piece (Zr-S group). Fixed full-arch implant-supported prostheses were cemented onto the implant. The models were exported to the analysis software and divided into meshes composed of nodes and tetrahedral elements. All materials were considered isotropic, elastic, and homogeneous. Therefore, all contacts were considered bonded, the mandible model was fixed in all directions, applying a static structural axial load of 300 N on the bottom of the fossa of the left mola r teeth. Microstrain and von-Mises stress (MPa) were adopted as failure criteria. Comparable stress and strain values were shown in the peri-implant bone for both groups. However, the Ti-S group presented a lower stress value (1,155.8 MPa) than the Zr-S group (1,334.2 MPa). Regarding bone tissues, the Ti-S group presented 612 µε and the Zr-S group presented 254 µε. The highest strain peak was observed in bone tissues around the implant closer to the load for both groups. Evaluating monotype zirconia and titanium implants, it is suggested that the greater the rigidity of the implant, the greater the concentration of internal stre sses and the less dissipation to the surrounding tissues. Therefore, monotype ceramic implants composed of yttrium-stabilized tetragonal polycrystalline zirconia may be a viable alternative to titanium implants for full-arch prostheses.


El objetivo de este estudio in silico fue evaluar el comportamiento biomecánico de una prótesis implanto soportada de arcada completa sobre implantes monotipo de titanio y zirconia. Se modeló una mandíbula en 3D que contenía tejido óseo cortical y esponjoso de 1,0 mm de espesor. En cada modelo, se insertaron cuatro implantes dentales (3,3 x 10 mm) en el modelo de mandíbula. Los implantes consistieron en Monotipo de Titanio y Zirconia. Sobre el implante se cementaron prótesis implanto soportadas de arcada completa fija. Los modelos se exportaron al software de análisis y se dividieron en mallas compuestas por nodos y elementos tetraédricos. Todos los materiales se consideraron isotrópicos, elásticos y homogéneos. Por lo tanto, todos los contactos se consideraron cementados, el modelo mandibular se fijó en todas las direcciones, aplicando una carga vertical estructural estática de 300 N en el fondo de la fosa de los dientes molares izquierdos. Se seleccionaron la microesfuerzo y la tensión de Von-Mises (MPa) como criterios de falla. Se mostraron valores de tensión y deformación comparables en el hueso periimplantario para ambos grupos. Sin embargo, el grupo Ti-S presentó un valor de estrés menor (1.155,8 MPa) que el grupo Zr-S (1.334,2 MPa). En cuanto a los tejidos óseos, el grupo Ti-S presentó 612 µε y el grupo Zr-S presentó 254 µε. La mayor concentración de deformación en el tejido óseo se observó en los tejidos alrededor del implante más cerca de la carga para ambos grupos. Al evaluar los implantes monotípicos de zirconia y titanio, se sugiere que cuanto mayor sea la rigidez del implante, mayor será la concentración de tensiones internas y menor la disipación a los tejidos circundantes. Por lo tanto, los implantes cerámicos monotipo compuestos de zirconia policristalina tetragonal estabilizada con itrio pueden ser una alternativa viable a los implantes de titanio para prótesis de arcada completa.


Subject(s)
Dental Implants , Dental Materials , Stress, Mechanical , Biomechanical Phenomena , Finite Element Analysis , Mandible/diagnostic imaging
12.
Acta Anatomica Sinica ; (6): 335-341, 2023.
Article in Chinese | WPRIM | ID: wpr-1015223

ABSTRACT

Objective To establish the three-dimensional finite element model of lumbar spine(L) 3-5 segments of the normal spine of 14-year-old adolescents to analyze the biomechanical changes of the lumbar spine after different degrees of lumbar foraminal plasty, and to provide reference for improvement of adolescent foraminoplasty. Methods A14-year-old female volunteer with no previous history of lumbar spine was selected to collect lumbar CT image data and we imported it into Mimics 16.0 software for modeling. ABAQUS software was used to conduct finite element model force analysis. Models M

13.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 352-358, 2023.
Article in Chinese | WPRIM | ID: wpr-961354

ABSTRACT

Objective @#To investigate the biomechanical effects of upper lip pressure on the maxilla in patients with a unilateral alveolar cleft and provide evidence for clinical diagnosis and treatment. @*Methods @#A 3D finite element maxillary model was generated based on cone beam CT (CBCT) data from an 11-year-old female patient with a unilateral alveolar cleft. Two different kinds of upper lip pressure, postsurgery pressure and normal pressure, were applied to the model. The displacement and stress of each reference node were compared and analyzed. @*Results @# By loading upper lip pressure, the maxillary alveolar crest rotated toward the defect and was displaced downward and backward. The displacement of the noncleft side was greater than that of the cleft side and it decreased gradually from the anterior to the posterior. The stress was concentrated on the anterior portion of the alveolar crest. The stress on the noncleft side was greater than that on the cleft side and it decreased gradually from the anterior to the posterior. The maximum stress was concentrated on the palate around the defect. The displacement and stress in the postsurgery group were greater than those of the normal group (P<0.05). @*Conclusion @#By loading upper lip pressure, the maxilla demonstrated asymmetry three-dimensionally. The adverse effects on the maxilla could be mitigated by reducing the upper lip pressure.

14.
West China Journal of Stomatology ; (6): 405-413, 2023.
Article in English | WPRIM | ID: wpr-1007921

ABSTRACT

OBJECTIVES@#This study aimed to construct the finite element model of the mandibular first molar with the invisible appliance and explore the dentition movement characteristics of the mandibular first molar when using micro-implant anchorage and different initial positions of the first molar.@*METHODS@#Models of the mandible, tooth, periodontal membrane, and invisible appliance were constructed using cone beam computed tomography (CBCT) data. The two groups were divided into the non-anchorage group and the micro-implant group (between the roots of the first molar and the second molar) based on whether the elastic traction of the micro-implant was assisted or not. The two groups were divided into the following conditions based on the starting position of the first molar: Working condition 1: the distance between the first molar and the second premolar was 0 mm; working condition 2: the distance between the first molar and the second premolar was 1 mm; working condition 3: the distance between the first molar and the second premolar was 2 mm; working condition 4: the distance between the first molar and the second premolar was 3 mm. The data characte-ristics of total displacement and displacement in each direction of dentition were analyzed.@*RESULTS@#In the non-ancho-rage group, all the other teeth showed reverse movement except for the first molar which was moved distally. Meanwhile, in the micro-implant group, except for a small amount of mesial movement of the second molar in wor-king condition 1, the whole dentition in other working conditions presented distal movement and anterior teeth showed lingual movement, among which the distal displacement of the first molar in working condition 4 was the largest. With the change of the initial position of the first molar to the distal, the movement of the first molar to the distal, the premolar to the mesial, and the anterior to the lip increased, while the movement of the second molar to the mesial decreased.@*CONCLUSIONS@#The micro-implant can effectively protect the anterior anchorage, increase the expression rate of molar distancing, and avoid the round-trip movement of the second molar. The initial position of the first molar movement is related to the amount of distancing and the remaining tooth movement.


Subject(s)
Finite Element Analysis , Molar , Bicuspid , Periodontal Ligament , Tooth Movement Techniques/methods , Orthodontic Appliances, Removable
15.
China Journal of Orthopaedics and Traumatology ; (12): 262-267, 2023.
Article in Chinese | WPRIM | ID: wpr-970859

ABSTRACT

OBJECTIVE@#With the help of finite element analysis, to explore the effect of proximal humeral bone cement enhanced screw plate fixation on the stability of internal fixation of osteoporotic proximal humeral fracture.@*METHODS@#The digital model of unstable proximal humeral fracture with metaphyseal bone defect was made, and the finite element models of proximal humeral fracture bone cement enhanced screw plate fixation and common screw plate fixation were established respectively. The stress of cancellous bone around the screw, the overall stiffness, the maximum stress of the plate and the maximum stress of the screw were analyzed.@*RESULTS@#The maximum stresses of cancellous bone around 6 screws at the head of proximal humeral with bone cement enhanced screw plate fixation were 1.07 MPa for No.1 nail, 0.43 MPa for No.2 nail, 1.16 MPa for No.3 nail, 0.34 MPa for No.4 nail, 1.99 MPa for No.5 nail and 1.57 MPa for No.6 nail. These with common screw plate fixation were:2.68 MPa for No.1 nail, 0.67 MPa for No.2 nail, 4.37 MPa for No.3 nail, 0.75 MPa for No.4 nail, 3.30 MPa for No.5 nail and 2.47 MPa for No.6 nail. Overall stiffness of the two models is 448 N/mm for bone cement structure and 434 N/mm for common structure. The maximum stress of plate appears in the joint hole:701MPa for bone cement structure and 42 0MPa for common structure. The maximum stress of screws appeared at the tail end of No.4 nail:284 MPa for bone cement structure and 240.8 MPa for common structure.@*CONCLUSION@#Through finite element analysis, it is proved that the proximal humerus bone cement enhanced screw plate fixation of osteoporotic proximal humeral fracture can effectively reduce the stress of cancellous bone around the screw and enhance the initial stability after fracture operation, thus preventing from penetrating out and humeral head collapsing.


Subject(s)
Humans , Finite Element Analysis , Bone Cements , Polymethyl Methacrylate , Biomechanical Phenomena , Shoulder Fractures/surgery , Fracture Fixation, Internal , Humeral Head , Bone Screws , Bone Plates
16.
China Journal of Orthopaedics and Traumatology ; (12): 255-261, 2023.
Article in Chinese | WPRIM | ID: wpr-970858

ABSTRACT

OBJECTIVE@#To investigate the biomechanical characteristics of different internal fixations for Pauwels type Ⅲ femoral neck fracture with defect, and provide reference for the treatment of femoral neck fracture.@*METHODS@#Three-dimensional (3D) finite element models of femoral neck fractures were established based on CT images, including fracture and fracture with defects. Four internal fixations were simulated, namely, inverted cannulated screw(ICS), ICS combined with medial buttress plate, the femoral neck system (FNS) and FNS combined with medial buttress plate. The von Mises stress, model stiffness and fracture displacements of fracture models under 2 100 N axial loads were measured and compared.@*RESULTS@#When femoral neck fracture was fixed by ICS and FNS, the peak stress was mainly concentrated on the surface of the screw near the fracture line, and the peak stress of FNS is higher than that of ICS;When the medial buttress plate was combined, the peak stress was increased and transferred to medial buttress plate, with more obvious of ICS fixation. For the same fracture model, the stiffness of FNS was higher than that of ICS. Compared with femoral neck fracture with defects, fracture model showed higher stiffness in the same internal fixation. The use of medial buttress plate increased model stiffness, but ICS increased more than FNS. The fracture displacement of ICS model exceeded that of FNS.@*CONCLUSION@#For Pauwels type Ⅲ femoral neck fracture with defects, FNS had better biomechanical properties than ICS. ICS combined with medial buttress plate can better enhance fixation stability and non-locking plate is recommended. FNS had the capability of shear resistance and needn't combine with medial buttress plate.


Subject(s)
Humans , Femoral Neck Fractures/surgery , Fracture Fixation, Internal/methods , Bone Screws , Bone Plates , Biomechanical Phenomena , Finite Element Analysis
17.
China Journal of Orthopaedics and Traumatology ; (12): 251-255, 2023.
Article in Chinese | WPRIM | ID: wpr-970857

ABSTRACT

OBJECTIVE@#To investigate the biomechanical characteristics of retinaculum in the treatment of femoral neck fractures.@*METHODS@#The CT data of a 75-year-old female volunteer was processed by software to construct an intact femur model and femoral neck fracture model fixed with three cannulated screws, which were divided into models with retinaculum or not. The Von-Mises stress distribution and displacement were compared to analyze the stability differences between the different models to study the mechanical characteristics of the retinaculum in the treatment of femoral neck fractures.@*RESULTS@#In the intact femur, the most obvious displacement appeared in the weight-bearing area of the femoral head, with retinaculum 0.381 37 mm, and without retinaculum 0.381 68 mm. The most concentrated part of the Von-Mises stress distribution was located in the medial and inferior part of the femoral neck, with retinaculum 11.80 MPa, without retinaculum 11.91 MPa. In the femoral neck fracture fixed with three cannulated screws model, the most obvious position of displacement also appeared in the weight-bearing area of the femoral head, with retinaculum 0.457 27 mm, without retinaculum 0.458 63 mm. The most concentrated part of the Von-Mises located at the medical and inferior part of the femoral neck, with retinaculum 59.22 MPa, without retinaculum 59.14 MPa. For the cannulated screws, the Von-Mises force peaks all appeared in the posterior and superior screw, with retinaculum 107.48 MPa, without retinaculum 110.84 MPa. Among the three screws, the Von-Mises stress of the anterior-superior screw was the smallest, which was 67.88 MPa vs 68.76 MPa in the retinaculum and non-retinaculum groups, respectively.@*CONCLUSION@#The complete retinaculum has little effect on the stability of intact femur and femoral neck fractures with anatomical reduction after internal fixation, and cannot effectively improve the stability of the fracture end after the fracture.


Subject(s)
Female , Humans , Aged , Finite Element Analysis , Femoral Neck Fractures/surgery , Fracture Fixation, Internal , Bone Screws , Femur Neck , Biomechanical Phenomena
18.
Chinese Journal of Traumatology ; (6): 147-154, 2023.
Article in English | WPRIM | ID: wpr-981917

ABSTRACT

PURPOSE@#Child head injury under impact scenarios (e.g. falls, vehicle crashes, etc.) is an important topic in the field of injury biomechanics. The head of piglet was commonly used as the surrogate to investigate the biomechanical response and mechanisms of pediatric head injuries because of the similar cellular structures and material properties. However, up to date, piglet head models with accurate geometry and material properties, which have been validated by impact experiments, are seldom. We aim to develop such a model for future research.@*METHODS@#In this study, first, the detailed anatomical structures of the piglet head, including the skull, suture, brain, pia mater, dura mater, cerebrospinal fluid, scalp and soft tissue, were constructed based on CT scans. Then, a structured butterfly method was adopted to mesh the complex geometries of the piglet head to generate high-quality elements and each component was assigned corresponding constitutive material models. Finally, the guided drop tower tests were conducted and the force-time histories were ectracted to validate the piglet head finite element model.@*RESULTS@#Simulations were conducted on the developed finite element model under impact conditions and the simulation results were compared with the experimental data from the guided drop tower tests and the published literature. The average peak force and duration of the guide drop tower test were similar to that of the simulation, with an error below 10%. The inaccuracy was below 20%. The average peak force and duration reported in the literature were comparable to those of the simulation, with the exception of the duration for an impact energy of 11 J. The results showed that the model was capable to capture the response of the pig head.@*CONCLUSION@#This study can provide an effective tool for investigating child head injury mechanisms and protection strategies under impact loading conditions.


Subject(s)
Animals , Swine , Finite Element Analysis , Skull/injuries , Craniocerebral Trauma/diagnostic imaging , Brain , Biomechanical Phenomena , Scalp
19.
China Journal of Orthopaedics and Traumatology ; (12): 543-549, 2023.
Article in Chinese | WPRIM | ID: wpr-981729

ABSTRACT

OBJECTIVE@#This study aims to examine the biomechanical effects of different reconstruction methods, including single-bundle, double-bundle anatomical reconstruction, and double-bundle truly anatomical reconstruction of the coracoclavicular ligament on the acromioclavicular joint using finite element analysis, to provide a theoretical basis for the clinical application of truly anatomical coracoclavicular ligament reconstruction.@*METHODS@#One volunteer, aged 27 years old, with a height of 178 cm and a weight of 75 kg, was selected for CT scanning of the shoulder joint. Three-dimensional finite element models of single-bundle reconstruction, double-bundle anatomical reconstruction, and double-bundle truly anatomical reconstruction of coracoclavicular ligament were established by using Mimics17.0, Geomagic studio 2012, UG NX 10.0, HyperMesh 14.0 and ABAQUS 6.14 software. The maximum displacement of the middle point of the distal clavicle in the main loading direction and the maximum equivalent stress of the reconstruction device under different loading conditions were recorded and compared.@*RESULTS@#The maximum forward displacement and the maximum backward displacement of the middle point of the distal clavicle in the double-bundle truly anatomic reconstruction were the lowest, which were 7.76 mm and 7.27 mm respectively. When an upward load was applied, the maximum displacement of the distal clavicle midpoint in the double-beam anatomic reconstruction was the lowest, which was 5.12 mm. Applying three different loads forward, backward, and upward, the maximum equivalent stress of the reconstruction devices in the double-beam reconstruction was lower than that in the single-beam reconstruction. The maximum equivalent stress of the trapezoid ligament reconstruction device in the double-bundle truly anatomical reconstruction was lower than that in the double-bundle anatomical reconstruction, which was 73.29 MPa, but the maximum equivalent stress of the conoid ligament reconstruction device was higher than that of the double-bundle anatomical reconstruction.@*CONCLUSION@#The truly anatomical reconstruction of coracoclavicular ligament can improve the horizontal stability of acromioclavicular joint and reduce the stress of the trapezoid ligament reconstruction device. It can be a good method for the treatment of acromioclavicular joint dislocation.


Subject(s)
Humans , Adult , Acromioclavicular Joint/surgery , Finite Element Analysis , Ligaments, Articular/surgery , Shoulder Joint/surgery , Plastic Surgery Procedures , Joint Dislocations/surgery
20.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 821-826, 2023.
Article in Chinese | WPRIM | ID: wpr-981674

ABSTRACT

OBJECTIVE@#To design customized titanium alloy lunate prosthesis, construct three-dimensional finite element model of wrist joint before and after replacement by finite element analysis, and observe the biomechanical changes of wrist joint after replacement, providing biomechanical basis for clinical application of prosthesis.@*METHODS@#One fresh frozen human forearm was collected, and the maximum range of motions in flexion, extension, ulnar deviation, and radialis deviation tested by cortex motion capture system were 48.42°, 38.04°, 35.68°, and 26.41°, respectively. The wrist joint data was obtained by CT scan and imported into Mimics21.0 software and Magics21.0 software to construct a wrist joint three-dimensional model and design customized titanium alloy lunate prosthesis. Then Geomagic Studio 2017 software and Solidworks 2017 software were used to construct the three-dimensional finite element models of a normal wrist joint (normal model) and a wrist joint with lunate prosthesis after replacement (replacement model). The stress distribution and deformation of the wrist joint before and after replacement were analyzed for flexion at and 15°, 30°, 48.42°, extension at 15°, 30°, and 38.04°, ulnar deviation at 10°, 20°, and 35.68°, and radial deviation at 5°, 15°, and 26.41° by the ANSYS 17.0 finite element analysis software. And the stress distribution of lunate bone and lunate prosthesis were also observed.@*RESULTS@#The three-dimensional finite element models of wrist joint before and after replacement were successfully constructed. At different range of motion of flexion, extension, ulnar deviation, and radial deviation, there were some differences in the number of nodes and units in the grid models. In the four directions of flexion, extension, ulnar deviation, and radial deviation, the maximum deformation of wrist joint in normal model and replacement model occurred in the radial side, and the values increased gradually with the increase of the range of motion. The maximum stress of the wrist joint increased gradually with the increase of the range of motion, and at maximum range of motion, the stress was concentrated on the proximal radius, showing an overall trend of moving from the radial wrist to the proximal radius. The maximum stress of normal lunate bone increased gradually with the increase of range of motion in different directions, and the stress position also changed. The maximum stress of lunate prosthesis was concentrated on the ulnar side of the prosthesis, which increased gradually with the increase of the range of motion in flexion, and decreased gradually with the increase of the range of motion in extension, ulnar deviation, and radialis deviation. The stress on prosthesis increased significantly when compared with that on normal lunate bone.@*CONCLUSION@#The customized titanium alloy lunate prosthesis does not change the wrist joint load transfer mode, which provided data support for the clinical application of the prosthesis.


Subject(s)
Humans , Lunate Bone/surgery , Finite Element Analysis , Titanium , Wrist Joint/surgery , Artificial Limbs , Range of Motion, Articular , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL