Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Medicine ; (12): 872-876, 2016.
Article in English | WPRIM | ID: wpr-819900

ABSTRACT

OBJECTIVE@#In this paper, we will discuss if the CETP polymorphism contributes to the centenarians in Hainan island.@*METHODS@#We tested the TaqIB and I405V polymorphisms of CETP gene among 276 centenarians and 301 matched healthy individuals by AS-PCR and analyzed the data with SPSS software package (Version 19.0).@*RESULTS@#Our data indicated that allele B1 and V have the significant differences between centenarians and healthy control groups with P < 0.001. Further analysis implied that genotypes B1B1 (P < 0.001, OR = 0.148, 95% CI = 0.095-0.230) and VV (P < 0.001 and OR = 0.353, 95% CI = 0.237-0.525) were significantly different between centenarians and matched controls. The combination of B and V, such as B1B1-II (P < 0.001, OR = 0.128, 95% CI = 0.049-0.329), B1B1-IV (P < 0.001, OR = 0.115, 95% CI = 0.056-0.237), B1B2-VV (P < 0.05, OR = 0.534, 95% CI = 0.310-0.920), and B2B2-VV (P < 0.001, OR = 0.198, 95% CI = 0.086-0.453) have significant differences between centenarians and matched healthy individuals from Hainan.@*CONCLUSION@#Our results implied that allele B1B1 and VV, as well as the combination B1B1-II, B1B1-IV, B1B2-VV and B2B2-VV may contribute to the longevity in centenarians of Hainan, south of China.

2.
Asian Pacific Journal of Tropical Medicine ; (12): 872-876, 2016.
Article in Chinese | WPRIM | ID: wpr-951340

ABSTRACT

Objective In this paper, we will discuss if the CETP polymorphism contributes to the centenarians in Hainan island. Methods We tested the TaqIB and I405V polymorphisms of CETP gene among 276 centenarians and 301 matched healthy individuals by AS-PCR and analyzed the data with SPSS software package (Version 19.0). Results Our data indicated that allele B1 and V have the significant differences between centenarians and healthy control groups with P < 0.001. Further analysis implied that genotypes B1B1 (P < 0.001, OR = 0.148, 95% CI = 0.095-0.230) and VV (P < 0.001 and OR = 0.353, 95% CI = 0.237-0.525) were significantly different between centenarians and matched controls. The combination of B and V, such as B1B1-II (P < 0.001, OR = 0.128, 95% CI = 0.049-0.329), B1B1-IV (P < 0.001, OR = 0.115, 95% CI = 0.056-0.237), B1B2-VV (P < 0.05, OR = 0.534, 95% CI = 0.310-0.920), and B2B2-VV (P < 0.001, OR = 0.198, 95% CI = 0.086-0.453) have significant differences between centenarians and matched healthy individuals from Hainan. Conclusion Our results implied that allele B1B1 and VV, as well as the combination B1B1-II, B1B1-IV, B1B2-VV and B2B2-VV may contribute to the longevity in centenarians of Hainan, south of China.

3.
Indian J Hum Genet ; 2004 Jul; 10(2): 46-52
Article in English | IMSEAR | ID: sea-143363

ABSTRACT

Our previous studies have found significant quantitative changes in the erythrocyte membrane proteins in essential hypertension (EH). The purpose of the present study was to quantify genetic and environmental contributions to quantitative variability of erythrocyte membrane proteins in EH. We studied 115 hypertensive patients, 126 normotensive subjects, 235 of their first-degree relatives and 24 twin pairs by sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis. The decomposition of total phenotypic variance of erythrocyte membrane proteins to genetic and environmental components was performed by the least squares method. We found that genetic factors play a significant role in the control of quantitative changes in erythrocyte membrane proteins in EH. The genetic contribution to anion exchanger variation was stronger in hypertensives (88%) than in normotensives (36%), and was attributed exclusively to additive polygenic effects. Variation in glucose transporter was under marked control of major gene effect (74%). Importantly, variations in anion and glucose transporters in EH but not in healthy controls were strongly affected by common underlying genes with strong pleiotropic effects (r=0.921, P<0.05). These data provide evidence to support the genetic source of quantitative changes in membrane proteins in EH. Furthermore, the pleiotropic effects of common underlying genes seem to be responsible for variations in the transport proteins likely associated with genetic susceptibility to essential hypertension.

SELECTION OF CITATIONS
SEARCH DETAIL