Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Chinese Journal of Tissue Engineering Research ; (53): 3583-3590, 2024.
Article in Chinese | WPRIM | ID: wpr-1021736

ABSTRACT

BACKGROUND:Due to the mechanical properties,unstable drug release,single function and other problems of pure hydrogel materials,in recent years,researchers have prepared a variety of metal organic frameworks-based hydrogel materials by introducing metal organic frameworks into hydrogel,and showed great potential in the field of soft and hard tissue regeneration. OBJECTIVE:To classify the metal organic frameworks-based hydrogel materials based on how metal organic frameworks enhance the properties of hydrogel and further summarize its recent research in the field of soft and hard tissue regeneration,in order to provide ideas and theoretical supports for the subsequent in-depth research on synthesis mechanism and clinical application of the composite material. METHODS:Using"metal organic frameworks,hydrogels,tissue engineering,tissue,bone regeneration,bone,wound"as English and Chinese search terms,we searched Web of Science,PubMed,CNKI,and Wanfang databases.The search period ranged from January 2000 to August 2023.By reading the titles and abstracts,the repetitive studies and unrelated literature of Chinese and English literature were excluded.After the literature quality evaluation,73 articles were included for review. RESULTS AND CONCLUSION:(1)Metal organic frameworks-based hydrogel materials effectively solve the problems of poor mechanical properties,unstable drug release and single function of pure hydrogel.(2)Metal organic frameworks enhance the capacity of repair and regeneration by strengthening the cross-linking of hydrogel,the drug delivery capacity of hydrogel and the multifunction of hydrogel.(3)In terms of hard tissue repair,it has shown good repair effects in animal models of diseases such as bone defects,osteoarthritis,and cartilage defects,suggesting potential application prospects in clinical repair.(4)In terms of soft tissue regeneration,it has the capacities of hemostasis,antibacterial,inflammatory state regulation,oxidative stress state regulation,promoting angiogenesis and other functions,effectively improving the microenvironment of various complex wounds and promoting soft tissue regeneration.(5)Although metal organic frameworks-based hydrogels have many excellent properties,they are still in the initial stage and there are some urgent problems to be solved in the process of clinical transformation,such as the cytotoxicity of metal organic frameworks and large-scale synthesis of metal organic frameworks.(6)With further research,metal organic frameworks-based hydrogels have broad application prospects in the field of soft and hard tissue repair.

2.
Odovtos (En línea) ; 23(3)dic. 2021.
Article in English | LILACS, SaludCR | ID: biblio-1386552

ABSTRACT

ABSTRACT: Progressive periodontal disease causes loss of supporting structures of teeth resulting in deep bony defects. In this case a report of 22-year old female patient is being presented with clinical findings of vertical bone loss in two adjacent teeth, on distal surface of 2nd upper right premolar and mesial surface of upper right 1st molar. Root canal treatment, non-surgical periodontal therapy followed by guided tissue regeneration was carried out using decalcified freeze-dried bone allograft (DFDBA) and collagen membrane. Analysis of clinical and radiographic findings showed marked reduction in pocket depth up to 12mm with hard tissue repair on 3-month, 2-year and 5- year follow ups.


RESUMEN: La enfermedad periodontal progresiva provoca la pérdida de las estructuras de soporte de los dientes, lo que resulta en defectos óseos profundos. En este caso clínico se presenta un informe de una paciente de 22 años con pérdida ósea vertical en la superficie distal del segundo premolar superior derecho y en la superficie mesial del primer molar superior derecho. El tratamiento del conducto radicular, la terapia periodontal no quirúrgica seguida de la regeneración tisular guiada se llevó a cabo utilizando aloinjerto óseo liofilizado descalcificado (DFDBA) y membrana de colágeno. El análisis de los hallazgos clínicos y radiográficos mostró una marcada reducción en la profundidad de la bolsa de hasta 12 mm con reparación de tejido duro en seguimientos de 3 meses, 2 años y 5 años.


Subject(s)
Humans , Female , Adult , Guided Tissue Regeneration/methods , Periodontal Pocket/diagnosis
3.
International Journal of Biomedical Engineering ; (6): 436-440, 2019.
Article in Chinese | WPRIM | ID: wpr-823499

ABSTRACT

The interface of ligaments, tendons, and bones are susceptible to damage, often fail to heal themselves, and even cannot achieve a good prognosis after surgery. Interface tissue engineering is a comprehensive strategy to functionally connect soft and hard tissues to regenerate original anatomical functions and structures, thereby improving clinical efficacy. In this paper, the interface tissue engineering and composite tissue regeneration in soft tissue healing were systematically reviewed. The recent advances in interface engineering were summarized, based on the treatment of structural damage from two common soft tissue-bone connections (ligamentous bone connections, tendon bone connections), from the development of single tissue to composite tissue structures. The latest interface tissue engineering innovation structure design and potential clinical applications in recent years were reviewed. For future research, in-depth research on the mechanisms of interface development, regeneration, and internal environment balance, structure-function relationships, and biological processes that drive interface development, regeneration, and internal environment balance are still necessary. The innovative studies on interface tissue engineering have promoted the significance of the integration of tissue engineering and clinical, and the construction of complex tissues, so that it has broader significance for the future regeneration of total joints.

4.
International Journal of Biomedical Engineering ; (6): 436-440, 2019.
Article in Chinese | WPRIM | ID: wpr-805289

ABSTRACT

The interface of ligaments, tendons, and bones are susceptible to damage, often fail to heal themselves, and even cannot achieve a good prognosis after surgery. Interface tissue engineering is a comprehensive strategy to functionally connect soft and hard tissues to regenerate original anatomical functions and structures, thereby improving clinical efficacy. In this paper, the interface tissue engineering and composite tissue regeneration in soft tissue healing were systematically reviewed. The recent advances in interface engineering were summarized, based on the treatment of structural damage from two common soft tissue-bone connections (ligamentous bone connections, tendon bone connections), from the development of single tissue to composite tissue structures. The latest interface tissue engineering innovation structure design and potential clinical applications in recent years were reviewed. For future research, in-depth research on the mechanisms of interface development, regeneration, and internal environment balance, structure-function relationships, and biological processes that drive interface development, regeneration, and internal environment balance are still necessary. The innovative studies on interface tissue engineering have promoted the significance of the integration of tissue engineering and clinical, and the construction of complex tissues, so that it has broader significance for the future regeneration of total joints.

SELECTION OF CITATIONS
SEARCH DETAIL