Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomedical and Environmental Sciences ; (12): 1045-1058, 2023.
Article in English | WPRIM | ID: wpr-1007880

ABSTRACT

OBJECTIVE@#In this study, the combined effect of two stressors, namely, electromagnetic fields (EMFs) from mobile phones and fructose consumption, on hypothalamic and hepatic master metabolic regulators of the AMPK/SIRT1-UCP2/FOXO1 pathway were elucidated to delineate the underlying molecular mechanisms of insulin resistance.@*METHODS@#Weaned Wistar rats (28 days old) were divided into 4 groups: Normal, Exposure Only (ExpO), Fructose Only (FruO), and Exposure and Fructose (EF). Each group was provided standard laboratory chow ad libitum for 8 weeks . Additionally, the control groups, namely, the Normal and FruO groups, had unrestricted access to drinking water and fructose solution (15%), respectively. Furthermore, the respective treatment groups, namely, the ExpO and EF groups, received EMF exposure (1,760 MHz, 2 h/day x 8 weeks). In early adulthood, mitochondrial function, insulin receptor signaling, and oxidative stress signals in hypothalamic and hepatic tissues were assessed using western blotting and biochemical analysis.@*RESULT@#In the hypothalamic tissue of EF, SIRT1, FOXO 1, p-PI3K, p-AKT, Complex III, UCP2, MnSOD, and catalase expressions and OXPHOS and GSH activities were significantly decreased ( P < 0.05) compared to the Normal, ExpO, and FruO groups. In hepatic tissue of EF, the p-AMPKα, SIRT1, FOXO1, IRS1, p-PI3K, Complex I, II, III, IV, V, UCP2, and MnSOD expressions and the activity of OXPHOS, SOD, catalase, and GSH were significantly reduced compared to the Normal group ( P < 0.05).@*CONCLUSION@#The findings suggest that the combination of EMF exposure and fructose consumption during childhood and adolescence in Wistar rats disrupts the closely interlinked and multi-regulated crosstalk of insulin receptor signals, mitochondrial OXPHOS, and the antioxidant defense system in the hypothalamus and liver.


Subject(s)
Humans , Rats , Animals , Adult , Rats, Wistar , Fructose/metabolism , Catalase , Receptor, Insulin/metabolism , AMP-Activated Protein Kinases/metabolism , Electromagnetic Fields/adverse effects , Sirtuin 1/metabolism , Cell Phone , Phosphatidylinositol 3-Kinases/metabolism , Forkhead Box Protein O1/metabolism , Uncoupling Protein 2
2.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 198-204, 2022.
Article in Chinese | WPRIM | ID: wpr-1014898

ABSTRACT

Metabolic syndrome, characterized by centralobesity, hypertension, bycentralobesity, hypertension, and hyperlipidemia, increases the incidence and mortality of cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and other metabolic diseases. It is well known that insulin resistance, especially hepatic insulin resistance, is a risk factor for metabolic syndrome. Current research has shown that the accumulation of hepatic fatty acid can cause hepatic insulin resistance through increased gluconeogenesis, lipogenesis, chronic inflammation, oxidative stress and endoplasmic reticulum stress, and impaired insulin signal pathway. Mitochondria are the major sites of fatty acid β-oxidation, which is the major degradation mechanism of fatty acids. Mitochondrial dysfunction has been shown to be involved in the development of hepatic fatty acid-induced hepatic insulin resistance. Mitochondrial autophagy (mitophagy), a catabolic process, selectively degrades damaged mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial dynamics and function. Therefore, mitophagy can promote mitochondrial fatty acid oxidation to inhibit hepatic fatty acid accumulation and improve hepatic insulin resistance. Here, we review advances in our understanding of the relationship between mitophagy and hepatic insulin resistance. Additionally, we also highlight the potential value of mitophagy in the treatment of hepatic insulin resistance and metabolic syndrome.

3.
Acta sci., Biol. sci ; 36(2): 223-229, abr.- jun. 2014. tab, ilus
Article in English | LILACS | ID: biblio-849064

ABSTRACT

Dehydroespiandrosterone (DHEA) is associated with improvements in chronic degenerative diseases, including obesity, insulin resistance, and cardiovascular diseases. Nevertheless, it is observed an increase in its concentration in individuals with liver lipid infiltration, but it is not precise if this condition emerges as a cause or a consequence. In this way, we aimed to identify gene expression alterations in lipid and glucose liver metabolism markers, as well as oxidative stress markers. For this purpose, male Wistar rats, 12-14 months old were treated with subcutaneous injections of DHEA (only dose of 10 mg kg-1); and after 7 days, hepatic gene expression by PCR real time were performed for the following genes: G6Pase, PEPCK, FAS, PPARγ, malic enzyme, ChREBP, LXR, catalase, GPx, iNOS, NADPH oxidase subunits and PCNA. We observed a tendency of reduction in G6Pase gene expression in treated group (p = 0.08). In addition, it was identified an increase in liver PPARγ and FAS gene expressions, two markers of increased activity of lipogenic pathway. We also observed an increase in iNOS gene expression, a known inductor of systemic and hepatic insulin resistance. In conclusion, our data indicates that the treatment with DHEA can be associated with the development of liver lipid infiltration and hepatic insulin resistance.


A deidroepiandrosterona (DHEA) encontra-se associada a melhorias em quadros de obesidade, resistência à insulina e doenças cardiovasculares. Porém, observa-se um aumento na sua concentração em indivíduos portadores de infiltração lipídica hepática, mas sem saber precisar se o mesmo surge como causa ou consequência. Assim, objetivamos identificar alterações na expressão gênica hepática de marcadores relacionados ao metabolismo lipídico e glicídico e de estresse oxidativo. Para tanto, ratos machos com 12-14 meses de idade foram tratados com injeção subcutânea de DHEA (dose única 10 mg kg-1), e após 7 dias foram feitas análises da expressão gênica hepática por PCR em tempo real das seguintes proteínas: G6Pase, PEPCK, FAS, PPARγ, enzima málica, ChREBP, LXR, catalase, GPx, iNOS, subunidades da NADPHoxidase e PCNA. Observamos uma tendência à redução da expressão gênica da G6Pase no grupo tratado (p = 0,08). Também identificamos um aumento na expressão gênica hepática do PPARγ e FAS, dois indicadores de aumento da atividade das vias de lipogênese. Observamos um aumento na expressão gênica da iNOS, um conhecido agente indutor de resistência insulina sistêmica e hepática. Em conclusão, nossos dados indicam que o tratamento com DHEA pode estar associado com o desenvolvimento de um quadro de infiltração lipídica hepática e resistência à insulina hepática.


Subject(s)
Dehydroepiandrosterone , Fatty Liver , Lipogenesis
SELECTION OF CITATIONS
SEARCH DETAIL