Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Protein & Cell ; (12): 89-99, 2016.
Article in English | WPRIM | ID: wpr-757192

ABSTRACT

Cancer stem cells (CSCs), a subpopulation of cancer cells with ability of initiating tumorigenesis, exist in many kinds of tumors including breast cancer. Cancer stem cells contribute to treatment resistance and relapse. Conventional treatments only kill differentiated cancer cells, but spare CSCs. Combining conventional treatments with therapeutic drugs targeting to CSCs will eradicate cancer cells more efficiently. Studying the molecular mechanisms of CSCs regulation is essential for developing new therapeutic strategies. Growing evidences showed CSCs are regulated by non-coding RNA (ncRNA) including microRNAs and long non-coding RNAs (lncRNAs), and histone-modifiers, such as let-7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we review the roles of microRNAs, lncRNAs and histone-modifiers especially Polycomb family proteins in regulating breast cancer stem cells (BCSCs).


Subject(s)
Humans , Breast Neoplasms , Genetics , Metabolism , Pathology , Histones , Metabolism , Neoplastic Stem Cells , Metabolism , RNA, Untranslated , Genetics , Metabolism
2.
J Biosci ; 2015 Sept; 40(3): 497-512
Article in English | IMSEAR | ID: sea-181425

ABSTRACT

Cyclin D3 is important for muscle development and regeneration, and is involved in post-mitotic arrest of muscle cells. Cyclin D3 also has cell-cycle-independent functions such as regulation of specific genes in other tissues. Ectopic expression of cyclin D3 in myoblasts, where it is normally undetectable, promotes muscle gene expression and faster differentiation kinetics upon serum depletion. In the present study, we investigated the mechanistic role of cyclin D3 in muscle gene regulation. We initially showed by mutational analysis that a stable and functional cyclin D3 was required for promoting muscle differentiation. Using chromatin immunoprecipitation assays, we demonstrated that expression of cyclin D3 in undifferentiated myoblasts altered histone epigenetic marks at promoters of muscle-specific genes like MyoD, Pax7, myogenin and muscle creatine kinase but not non-muscle genes. Cyclin D3 expression also reduced the mRNA levels of certain epigenetic modifier genes. Our data suggest that epigenetic modulation of muscle-specific genes in cyclin-D3-expressing myoblasts may be responsible for faster differentiation kinetics upon serum depletion. Our results have implications for a regulatory role for cyclin D3 in muscle-specific gene activation.

SELECTION OF CITATIONS
SEARCH DETAIL