Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Zhejiang University. Science. B ; (12): 348-365, 2021.
Article in English | WPRIM | ID: wpr-880743

ABSTRACT

This study probed the protective effect of recombinant

2.
Journal of Medical Postgraduates ; (12): 820-825, 2020.
Article in Chinese | WPRIM | ID: wpr-823275

ABSTRACT

ObjectiveA good invasion ability of extravilloustrophoblas (EVTs) is the prerequisite for successful placental colonization and effective remodeling of the uterine spiral artery. This article aims to simulate the pathophysiological process of oxidative stress inducing trophoblasts to pyroptosis in vitro, exploring the correlation between trophoblasts pyroptosis and the pathogenesis of preeclampsia.MethodsTwenty-five patients with preeclampsia were selected from the Department of Obstetrics and Gynecology, Zhongda Hospital affiliated to Southeast University from September 2017 to January 2019. Among them, early-onset preeclampsia (gestational weeks<34) was early-onset group (n=17), late-onset preeclampsia (gestational weeks≥34) was late-onset group (n=8), and full-term pregnant women with normal blood pressure (39<gestational weeks>42) were selected as normal group (n=10). Human trophoblasts were cultured with HTR-8/SVneo for 12 hours, and then treated with H2O2 (100, 150, 200, 250μmol/L) (2, 4, 6, 12 h), to induce human trophoblast HTR-8/SVneo pyrolysis model; the control group was normal cultured cells of 1640+10% fetal bovine serum + 1% antibiotics. Placental specimens from 7 patients with preeclampsia were randomly selected, including 3 cases in early onset group, 4 cases in late onset group and 1 case in normal group. The total proteins of cells and placenta were extracted respectively, and the expression of scorch death-related molecular proteins was detected. The mRNA levels of pyroptosis related molecules in cells was detected by RT-qPCR, and the morphological changes of cells were observed by inverted phase contrast microscope.ResultsThe Western blot results showed that the activation of the key molecular activation form of the cell pyrogenesis pathway, Cleaved caspase1, could be detected in the placenta. When H2O2 was 150 mol/L for 2h, the mRNA levels of NLRP3 and IL-1, the key molecules of the upstream activation signal, were significantly up-regulated (8.680±0.481, 14.136±0.244) compared with the control group (1.00±0.00) (P<0.000). At 4h, mRNA levels of key molecule GSDMD and downstream inflammatory factor IL-18 (1.639±0.354 and 1.794±0.043) in the pyrogenesis pathway were significantly higher than those in the control group (1.00±0.00), with statistically significant differences (P<0.05). By reverse validation of the mRNA levels of the molecules associated with pyroptosis, the optimal conditions of the model induced by H2O2 were 150 mol/L and 4h, and the typical changes, such as cell swelling, fragmentation and plasma membrane bubble formation, could be seen under the light microscope.ConclusionThe pyroptosis model of trophoblast cells was successfully established, and the physiological process of oxidative stress inducing trophoblasts to pyroptosis in vitro was successfully simulated, providing new ideas and directions for the diagnosis and treatment of preeclampsia and the development of new drugs.

3.
Journal of Pharmaceutical Practice ; (6): 224-228, 2017.
Article in Chinese | WPRIM | ID: wpr-790739

ABSTRACT

Objective To detect the transcription factors of copper ion (Cu,2+) metabolism and oxidative stress by Candida albicans knocked down different transcription factors.Methods Spot assay, growth curve were used.Results The sensitivity to Cu,2+ in Cup2Δ/Δ was increasing and the growth of Cup2Δ/Δ was inhibited in 5 mmol /L Cu,2+ medium.The results showed that Cup2Δ/Δ also increased the sensitivity to H2O2, interestingly, Cu,2+and H2O2 played a synergistic antifungal effect.The tolerance of Cup2Δ/Δ and SN250 to H2O2 induced oxidative stress was increased after BCS chelating Cu,2+.In the fluconazole, miconazole and ketoconazole susceptibility experiments, Cup2Δ/Δ did not show susceptibility to azole drugs.Conclusion Knockout transcription factor Cup2, which could increase the sensitivity to Cu,2+ and H2O2in Candida albicans.Transcription factor Cup2 might be involved in the regulation and control of Candida albicansmetabolism on Cu,2+ and oxidative stress induced by H2O2, but not involved in the regulation and control of drug resistance to azole drugs.

4.
Experimental Neurobiology ; : 93-103, 2014.
Article in English | WPRIM | ID: wpr-187150

ABSTRACT

Glutathione (GSH) protects cells against oxidative stress by playing an antioxidant role. Protecting brain endothelial cells under oxidative stress is key to treating cerebrovascular diseases and neurodegenerative diseases including Alzheimer's disease and Huntington's disease. In present study, we investigated the protective effect of GSH on brain endothelial cells against hydrogen peroxide (H2O2). We showed that GSH attenuates H2O2-induced production of nitric oxide (NO), reactive oxygen species (ROS), and 8-Oxo-2'-deoxyguanosine (8-OHdG), an oxidized form of deoxiguanosine. GSH also prevents H2O2-induced reduction of tight junction proteins. Finally, GSH increases the level of nuclear factor erythroid 2-related factor 2 (Nrf2) and activates Nrf2-mediated signaling pathways. Thus, GSH is a promising target to protect brain endothelial cells in conditions of brain injury and disease.


Subject(s)
Alzheimer Disease , Apoptosis , Brain Injuries , Brain , Endothelial Cells , Glutathione , Huntington Disease , Hydrogen Peroxide , Hydrogen , Neurodegenerative Diseases , Nitric Oxide , Oxidative Stress , Reactive Oxygen Species , Tight Junction Proteins
SELECTION OF CITATIONS
SEARCH DETAIL