Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Article | IMSEAR | ID: sea-192314

ABSTRACT

Background: Implant success and survival rate ranges from 93% to 97%; however, failures are not very uncommon. These failures can be caused due to a variety of reasons out of which increased heat during drilling of osteotomies is a major contributor.Aim: The aim of this study was to develop a new generation diamond-coated drill and compare the thermal changes between commercially available drills and the experimental diamond coated drill during implant site preparation in artificial bone. Material and Methods: Three types of drills were selected for the study; Group A (Carbide), Group B (Stainless Steel), and Group C (Experimental). A total of 60 implant site preparations were performed with all the drills in artificial bone using a surgical unit linked to a testing device, in order to standardize implant drilling procedures. Bone temperature variations were recorded when drilling at a depth of 10 mm. A constant irrigation of 50 ml/minute and drilling speed of 800 r.p.m. was maintained. Results: The mean temperature of Group A, Group B, and Group C was 35.57°C, 36.83°C and 34.23°C, respectively. The results were assessed and statistically analyzed using ANOVA test and post hoc Bonferroni test. Statistically significant higher temperatures were obtained with stainless steel drill and carbide drill when compared with the experimental diamond coated drill. (P = 0.000). Conclusions: Diamond coated osteotomy drills have shown promising results in reducing heat generation at the osteotomy. Further studies need to be conducted to maximize the potential use of diamond as components of drills in implant dentistry.

2.
Article | IMSEAR | ID: sea-192027

ABSTRACT

As implant site preparation and bone are critical precursors to primary healing, thermal and mechanical damage to the bone must be minimized during the preparation of the implant site. Moreover, excessively traumatic surgery can adversely affect the maturation of bone tissue at the bone/implant interface and consequently diminish the predictability of osseointegration. So, this study was carried out to evaluate the various biological and mechanical factors responsible for heat generation during osteotomy site preparation to reduce the same for successful osseointegration of dental implants. Study Design: A broad search of the dental literature in PubMed added by manual search was performed for articles published between 1992 and December 2015. Various bio-mechanical factors related to dental implant osteotomy preparation such as dental implant drill designs/material/wear, drilling methods, type of irrigation, and bone quality were reviewed. Titles and abstracts were screened and articles which fulfilled the inclusion criteria were selected for a full-text reading. Results: The initial database search yielded 123 titles, of which 59 titles were discarded after reading the titles and abstracts, 30 articles were again excluded based on inclusion and exclusion criteria, and finally 34 articles were selected for data extraction. Many biological and mechanical factors responsible for heat generation were found. Conclusion: Literatures of this review study have indicated that there are various bio-mechanical reasons, which affect the temperature rise during osteotomy and suggest that the amount of heat generation is a multifactorial in nature and it should be minimized for better primary healing of the implant site.

SELECTION OF CITATIONS
SEARCH DETAIL