Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 408
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 78-88, 2024.
Article in Chinese | WPRIM | ID: wpr-1031874

ABSTRACT

ObjectiveTo investigate the effects of berbamine hydrochloride on sorafenib resistance in hepatocellular carcinoma cells and the underlying mechanisms. MethodThe sorafenib-resistant cell line SMMC-7721/S was selected by the concentration increment method starting at 1.25 μmol·L-1 sorafenib. Both SMMC-7721 and SMMC-7721/S cells were treated with 0, 2.5, 5, 10, 15, 20 μmol·L-1 sorafenib, and the cell counting kit-8 (CCK-8) assay was employed to determine the half maximal inhibitory concentration (IC50) and calculate the resistance index (RI). Western blot was conducted to compare the expression of proteins involved in autophagy and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway between SMMC-7721 and SMMC-7721/S cells. Furthermore, SMMC-7721/S cells were treated with 5 μmol·L-1 berbamine hydrochloride alone or in combination with 2.5, 5, 10 μmol·L-1 sorafenib, and the cell growth was assessed by the CCK-8 assay. In addition, SMMC-7721 and SMMC-7721/S cells were treated with 5 μmol·L-1 berbamine hydrochloride alone or in combination with 5 μmol·L-1 sorafenib, and the cell proliferation was examined by the colony formation assay. The immunofluorescence assays with Microtubule-associated protein 1 light chain 3 (LC3) and LysoTracker as probes were employed to assess the lysosomal acidification in SMMC-7721 cells treated with 5 μmol·L-1 berbamine hydrochloride or 0.1 μmol·L-1 autophagy inhibitor bafilomycin A1 (Baf). Further, the expression of proteins involved in autophagy and PI3K/Akt/mTOR signaling pathway was determined by Western blot and compared between groups. ResultSorafenib showed the IC50 of 9.56 mol·L-1 (P<0.01) and 7.99 mol·L-1 for SMMC-7721/S and SMMC-7721 cells, respectively, at 24 h. The resistance index (RI) of SMMC-7721/S for sorafenib was 1.20 (P<0.01), which indicated mild resistance. Compared with SMMC-7721 cells, SMMC-7721/S cells exhibited up-regulated expression of p-mTOR, p-Akt, and LC3Ⅱ, down-regulated expression of p62 protein (P<0.01), and unchanged Akt protein level. CCK-8 and colony formation assays demonstrated that the combination of berbamine hydrochloride and sorafenib exhibited a synergistic effect (Q>1.15), with berbamine hydrochloride partially reversing the resistance of liver cancer cells to sorafenib. The immunofluorescence detection of LC3 revealed that berbamine hydrochloride and Baf significantly increased LC3 in SMMC-7721 cells. The detection with LysoTracker as the probe showed that berbamine hydrochloride inhibited the acidity of lysosomes in SMMC-7721 cells (P<0.01), indicating the suppression of autophagy. Berbamine hydrochloride further enhanced the downregulation of p-mTOR and p-Akt protein levels and did not change the Akt protein level in SMMC-7721 cells exposed to sorafenib. Berbamine hydrochloride inhibited the increase in p-mTOR expression, down-regulated the p-Akt protein level, and did not change the total Akt protein level in the SMMC-7721/S cells exposed to sorafenib. ConclusionBerbamine hydrochloride can ameliorate the resistance of liver cancer cells to sorafenib by inhibiting cellular autophagy and the PI3K/Akt/mTOR signaling pathway.

2.
China Occupational Medicine ; (6): 144-149, 2024.
Article in Chinese | WPRIM | ID: wpr-1038742

ABSTRACT

ObjectiveTo investigate the effects of maltol aluminum exposure on miR-193a-3p, demethylase AlkB homolog 5 (ALKBH5), phosphatase and tensin homolog deleted on chromosome ten (PTEN) and protein kinase B (AKT), and whether miR-193a-3p is involved in aluminum-induced cognitive impairment by regulating ALKBH5/PTEN/AKT signaling pathway. Methods Specific pathogen-free male SD rats were randomly divided into control group and low-, medium- and high- dose groups according to their body weight, with eight rats in each group. Rats in the low-, medium-, and high- dose groups were intraperitoneally injected with maltol aluminum solution at concentrations of 10.00, 20.00, and 40.00 μmol/kg body weight, respectively, while the rats in control group were given an equal volume of 0.9% sodium chloride solution. Rats were injected for five days every week for three months. After injection, the novel object recognized test was used to assess the learning and memory ability of the rats. The relative expression of miR-193a-3p and B-cell lymphocytoma-2 (Bcl-2), Bcl-2 associated X protein (Bax) and cysteine aspartate protease-3 (Caspase-3) mRNA in rat hippocampus was detected using the real-time quantitative polymerase chain reaction. The relative protein expression of ALKBH5, PTEN, and AKT2 in the rat hippocampus was detected using Western blot. Results The discrimination index and the preference index of the new object recognition test of the rats in high-dose group were lower than those in control group and low-dose group (all P<0.05). The relative expression of miR-193a-3p and Bcl-2 mRNA in the hippocampus of the rats in high-dose group was lower than those in control group and low-dose group (all P<0.05). The relative mRNA expression of Bax in the high-dose group was higher than those in the control group and low-dose group (both P<0.05). The relative mRNA expression of Caspase-3 of the rats in the high-dose group was higher than that in the other three groups (both P<0.05). The relative protein expression of ALKBH5 in the hippocampus of the rats in the high-dose group was lower than that in the control group (P<0.05). The relative expression of PTEN protein was higher than those in the control group and low-dose group (both P<0.05). The relative protein expression of AKT2 was lower than those in the control group and low-dose group (both P<0.05). Conclusion Sub-chronic aluminum exposure can inhibit the expression of miR-193a-3p in the hippocampus of rats, which may disrupt the ALKBH5/PTEN/AKT pathway and affect normal neuronal homeostasis and cellular function. This pathway may play an important role in aluminum-induced cognitive impairment.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 95-104, 2024.
Article in Chinese | WPRIM | ID: wpr-1039629

ABSTRACT

ObjectiveTo explore the intervention effect and molecular mechanism of Dabufei decoction in Dunhuang formula combined with cisplatin on Lewis lung adenocarcinoma-bearing mice. MethodFifty C57BL/6J mice were used, with 10 randomly assigned to the blank group (without modeling), and 40 subcutaneously inoculated with Lewis cells to establish a Lewis lung adenocarcinoma-bearing mouse model. These 40 mice were randomly divided into the following four groups (with 10 mice in each group): Model group (equal volume of physiological saline), cisplatin group (5 mg·kg-1), Dabufei decoction group (14.35 g·kg-1·d-1), and Dabufei decoction combined with cisplatin group (Dabufei decoction 14.35 g·kg-1·d-1 + cisplatin 5 mg·kg-1). Each group was treated continuously for 14 days. The general condition of the mice was observed, body weight changes were recorded, and the tumor inhibition rate, spleen index, and thymus index were calculated. Peripheral blood white blood cell (WBC), platelet (PLT), and hemoglobin (HGB) were detected by routine blood tests. Flow cytometry was used to detect the expression of CD4+CD25+FoxP3+ regulatory T cells (Treg) and natural killer (NK) cells in the spleen. Western blot and real-time quantitative polymerase chain reaction (Real-time PCR) were used to determine the expression of proteins and mRNA related to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in tumor tissues. ResultCompared with the blank group, the model group showed decreased body weight (P<0.05), spleen index, and thymus index (P<0.05), decreased percentage of NK cells in the spleen (P<0.05), increased percentage of Treg cells (P<0.05), and decreased counts of WBC, PLT, and HGB (P<0.05). Compared with the model group, the Dabufei decoction group exhibited significant tumor growth inhibition, increased body weight, and reduced tumor weight (P<0.05), increased percentage of NK cells (P<0.05), decreased proportion of Treg cells (P<0.05), and increased counts of WBC, PLT, and HGB (P<0.05). In the cisplatin group, tumor growth was significantly inhibited, body weight significantly decreased (P<0.05), and tumor weight significantly reduced (P<0.05). The spleen index and thymus index decreased (P<0.05), and the percentage of Treg cells significantly decreased (P<0.05). The counts of WBC, PLT, and HGB significantly decreased (P<0.05). In the Dabufei decoction combined with cisplatin group, tumor growth was significantly inhibited, and tumor weight significantly reduced (P<0.05). The levels of phosphorylated PI3K, Akt, and mTOR proteins and mRNA in tumor tissues were significantly reduced in all medication groups (P<0.05). Compared with the cisplatin group, the Dabufei decoction combined with cisplatin group showed significantly inhibited tumor growth, reduced tumor weight (P<0.05), increased body weight (P<0.05), increased spleen index and thymus index (P<0.05), increased percentage of NK cells (P<0.05), decreased percentage of Treg cells (P<0.05), significantly increased counts of WBC, PLT, and HGB (P<0.05), and reduced levels of phosphorylated PI3K, Akt, and mTOR and their mRNA (P<0.05). ConclusionDabufei decoction combined with cisplatin has a synergistic effect with reduced toxicity, effectively regulating immune function, increasing the proportion of NK cells, reducing the proportion of Treg cells, improving bone marrow suppression, and downregulating the PI3K/Akt/mTOR signaling pathway to inhibit tumor growth in Lewis lung adenocarcinoma-bearing mice.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 113-121, 2024.
Article in Chinese | WPRIM | ID: wpr-1039631

ABSTRACT

ObjectiveTo explore the underlying mechanism by which the Chinese medicine compound Yitangkang granule(YTK) treats diabetic kidney disease (DKD) by observing its effects on podocyte autophagy through the regulation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/forkhead transcription factor O1 (FoxO1) signaling pathway mediated by silent information regulator 1 (SIRT1) via advanced glycation end products (AGE)/receptor for AGE (RAGE) axis. MethodNinety-six 8-week-old healthy male SPF-grade Wistar rats were selected and randomly divided into blank control group (B), model control group, high-dose YTK (40 g·kg-1), medium-dose YTK (20 g·kg-1), low-dose YTK (10 g·kg-1), and Western medicine control (20 mg·kg-1 losartan) groups. The DKD rat model was established by high-fat diet feeding combined with intraperitoneal injection of streptozotocin. After successful modeling, the rats in each group received the corresponding treatments for eight weeks. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and catalase (CAT) were measured according to the instructions of the respective assay kits. Hematoxylin and eosin (HE) staining was used to observe pathological changes in kidney tissues. Immunohistochemistry was employed to detect the average optical density values of α-smooth muscle actin (α-SMA), fibronectin (FN), desmin, and nephrin. Western blot analysis was used to measure the expression levels of PI3K, phosphorylated PI3K (p-PI3K), Akt, phosphorylated Akt (p-Akt), RAGE, SIRT1, Caspase-3, and FoxO1 proteins in kidney tissues of DKD rats. ResultCompared with the blank control group, the model group showed significantly lower levels of SOD, GSH-Px, and CAT, and significantly higher levels of MDA (P<0.01). The rats exhibited severe kidney damage. The positive expression of podocyte marker proteins α-SMA, FN, and desmin increased significantly, while nephrin and podocin significantly decreased (P<0.01). The expression levels of PI3K, p-PI3K, Akt, p-Akt, RAGE, and Caspase-3 proteins were significantly elevated, while SIRT1 and FoxO1 protein levels were significantly reduced (P<0.01). Compared with the model control group, rats in the YTK treatment groups showed significantly higher levels of SOD, GSH-Px, and CAT, and significantly lower levels of MDA in serum (P<0.01). The degree of kidney damage was reduced to varying extents. The average optical density values of podocyte marker proteins α-SMA, FN, and desmin were significantly decreased, while nephrin and podocin significantly increased (P<0.01). The expression levels of PI3K, p-PI3K, Akt, p-Akt, RAGE, and Caspase-3 in kidney tissues were significantly reduced, while SIRT1 and FoxO1 expression levels significantly increased (P<0.01). The Chinese medicine groups demonstrated a clear dose-response trend. ConclusionYTK may alleviate kidney pathological damage, reduce proteinuria, and protect kidney function in DKD rats, thereby delaying the progression of DKD by improving podocyte autophagy through the AGE-RAGE axis-mediated SIRT1 regulation of the PI3K/Akt/FoxO1 signaling pathway. Additionally, a dose-response relationship was observed in the Chinese medicine groups.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 292-298, 2024.
Article in Chinese | WPRIM | ID: wpr-1039651

ABSTRACT

Chronic urticaria (CU) is a common skin disease worldwide, and its incidence is increasing year by year in various regions. Clinical manifestations such as severe itching can affect normal work, sleep, and daily life and increase the negative psychological burden caused by stress, anxiety, and depression. Mast cell activation and degranulation induced by immunoglobulin(Ig)E hypersensitivity is one of the core pathogenic mechanisms of CU, and there is no cure. Antihistamines such as cetirizine and loratadine are preferred for the clinical treatment of CU. Although they can effectively improve clinical manifestations such as itchiness, long-term application can increase the risk of adverse reactions and drug resistance. The phosphatidylinositol kinase/serine-threonine protein kinase B(PI3K/Akt) signaling pathway, as a classical signaling pathway regulated by phosphatidylinositol and tyrosine kinase receptor (RTK), is a key target regulating the production and release of cytokines in macrophages and affecting the migration of leukocytes and the activation of mast cells and inflammation, and it can be involved in a variety of metabolic processes, such as mast cell activation and degranulation induced by IgE hypersensitivity and abnormal activation of the complement system so that the PI3K/Akt molecular pathway could be an important target for the future eradication of CU. However, the mechanism and potential role of the PI3K/Akt signaling pathway in the treatment of CU are less reported in China. Now, this paper reviewed the molecular mechanism of PI3K/Akt signaling pathway regulation in the treatment of CU and provided corroborative evidence and therapeutic strategy choices for the treatment of CU with traditional Chinese medicine (TCM) from the perspectives of molecular regulation and network pharmacology analysis.

6.
Herald of Medicine ; (12): 19-25, 2024.
Article in Chinese | WPRIM | ID: wpr-1023673

ABSTRACT

Objective To investigate the effects of icariin on high glucose-induced autophagy and apoptosis of podocytes,and the regulating effects on mammalian target of rapamycin(mTOR)/serine-threonine kinase(Akt)/cyclic adenosine monophosphate response element binding protein(CREB)pathway.Methods The mouse podocytes MPC5 were taken and divided into five groups:normal control group(5.5 mmol·L-1 glucose),high glucose group(30 mmol·L-1 glucose),icariin group(30 mmol·L-1glucose+5 μmol·L-1icariin),GDC-0349 group(30 mmol·L-1glucose+50 μmol·L-1 GDC-0349),icariin+GDC-0349 group(30 mmol·L-1 glucose+5 μmol·L-1 icariin+50 μmol·L-1 GDC-0349).Cultured for 48 hours,the tetramethylazozolium salt method was used to detect the viability of MPC5 cells;acridine orange staining was used to observe the autophagy of MPC5 cells;apoptosis of MPC5 cells was detected by flow cytometry;Western blotting was used to detect the expression of autophagy[microtubule associated protein one light chain 3(LC3)II,LC3Ⅰ,autophagy-related protein(Beclin-1)],apoptosis[Bcl-2 related X protein(Bax),B cell lymphoma-2(Bcl-2)]and mTOR/Akt/CREB pathway-related proteins of MPC5 cells.Results Compared with the normal control group,the cell viability,expression levels of Bcl-2,phosphorylated mTOR(p-mTOR)/mTOR,phosphorylated Akt(p-Akt)/Akt,phosphorylated CREB(p-CREB)/CREB protein of MPC5 cells in the high glucose group were significantly decreased(P<0.05),the autophagy ability was enhanced,the autophagosome showed orange fluorescence,and the apoptosis rate,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bax protein expression levels were significantly increased(P<0.05).Compared with the high glucose group,the cell viability,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bcl-2,p-mTOR/mTOR,p-Akt/Akt,p-CREB/CREB protein expression levels of MPC5 cells in icariin group were significantly increased,the autophagy ability was further enhanced,the number of autophagosomes was increased,the autophagosomes showed brick red fluorescence(P<0.05),the apoptosis rate and Bax protein expression level were significantly decreased(P<0.05),and the cell viability,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bcl-2,p-mTOR/mTOR,p-Akt/Akt and p-CREB/CREB proteins expression levels of MPC5 cells in GDC-0349 group were significantly decreased,the autophagy ability was weakened,the number of autophagosomes was reduced,the autophagosomes showed orange fluorescence(P<0.05),and the apoptosis rate and Bax protein expression level were significantly increased(P<0.05);icariin+GDC-0349 could reverse the effect of icariin on high glucose induced MPC5 cells(P<0.05).Conclusion Icariin promotes elevated glucose-induced podocyte autophagy and inhibits apoptosis by activating the mTOR/Akt/CREB pathway.

7.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 501-511, 2024.
Article in Chinese | WPRIM | ID: wpr-1024624

ABSTRACT

Endometriosis(Endometriosis,EMs)is a disease caused by abnormal colonization of the endometrial stroma or glands to sites other than the coated mucosa of the uterine cavity.Phospho-lipid inositol 3 kinase(phosphoinositide 3-kinase,PI3K)/protein kinase B(protein kinase B,Akt)sig-naling pathway is involved in the process of focal blood vessel formation,cell autophagic apoptosis,migration and invasion,and is one of the classic pathways regulating the pathological characteris-tics of EMs.The characteristics of multi-compo-nent,multi-target and multi-pathway of TCM have significant advantages in the treatment of EMs.Some TCM active components and TCM com-pounds can interfere with the PI3K/Akt signaling pathway,thus inhibiting the treatment of endome-triotic tissues,reducing pain and alleviating fibrotic lesions.By explaining the connection between the key targets of PI3K/Akt signaling pathway and EMs,this paper summarizes and summarizes the re-search status of EMs by regulating PI3K/Akt signal pathway in home and abroad,aiming to provide a new perspective and idea for the use of traditional Chinese medicine and compound to treat EMs.

8.
Chinese Journal of Diabetes ; (12): 125-132, 2024.
Article in Chinese | WPRIM | ID: wpr-1025161

ABSTRACT

Objective To investigate the effect of miR-130a targeting phosphase and tensin homology deleted on chromosome ten(PTEN)/phosphoinositide 3 kinase(PI3K)/protein kinase B(AKT)pathway on renal tissuecell apoptosis in diabetic kidney disease(DKD)rats.Methods The DKD rat model was constructed by feeding high-sugar and high-fat diet combined with intraperitoneal injection of streptozotocin(STZ).72 rats were divided into normal control group(NC),DKD model group(DKD),miR-130a agonist negative control group(NC agomir),and miR-130a agonist group(miR-130a agomir),miR-130a agomir+ PTEN overexpression negative control group(miR-130a agomir+pcDNA),and miR-130a agomir+ PCDNA-PTEN overexpression group(miR-130a Agomir + PCDNA-PTEN),with12 rats in each group.Urinary microalbumin kit was used to detect 24 h urine albumin(UAlb).Fasting blood glucose(FBG),serum creatinine(Scr)and blood urea nitrogen(BUN)were detected by automatic biochemical analyzer.Pathological changes of renal tissue were detected by HE staining.The levels of serum IL-6 and TNF-α were detected by ELISA.The apoptosis of renal tissue was detected by TUNEL staining.The expression of miR-130a was detected by qRT-PCR,and the expression of B-cell lymphoma-2-associated X protein(Bax),B-cell lymphoma-2(Bcl-2)and PTEN/PI3K/AKT pathway were detected by Western blot.Dual luciferase reporter gene experiment was used to verify the targeting relationship between miR-130a and PTEN.Results Compared with DKD and NC agomir groups,24 h UAlb,FPG,Scr,BUN,IL-6,TNF-α,renal cell apoptosis rate,Bax protein expression and PTEN protein expression in miR-130a agomir group were decreased(P<0.05).The expressions of miR-130a,Bcl-2,p-Akt/AKT protein were increased(P<0.05).Compared with miR-130a agomir group,24 h UAlb,FPG,Scr,BUN,IL-6,TNF-α,renal cell apoptosis rate,Bax protein expression and PTEN protein expression were increased in miR-130a agomir+pcDNA-PTEN group(P<0.05).The expression of Bcl-2,p-Akt/AKT protein decreased(P<0.05).Conclusion Overexpression of miR-130a may inhibit renal cell apoptosis in DKD rats by down-regulating PTEN to activate PI3K/AKT pathway.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 48-57, 2024.
Article in Chinese | WPRIM | ID: wpr-1006554

ABSTRACT

ObjectiveTo explore the mechanism of Wenyang Jieyu prescription in regulating hippocampal neuron apoptosis and improving synaptic plasticity in the mouse model of depression induced by maternal separation combined with restraint stress. MethodThe mice on postnatal day 0 (PD0) were randomly assigned into a control group (n=10) and a modeling group (n=50). Maternal separation combined with restraint stress was adopted to establish the mouse model of depression, and the modeled mice were randomized into model, Wenyang prescription, Jieyu prescription, Wenyang Jieyu prescription, and fluoxetine groups (n=10) on the weaning day (PD21). From PD21 to PD111, the mice were fed with the diets mixed with corresponding medicines. The sucrose preference test, open field test, O-maze test, and novel object recognition test were then conducted to evaluate the depression, memory, and learning abilities of mice. Immunohistochemistry (IHC) was employed to measure the atomic absorbance (AA) of postsynaptic density protein 95 (PSD95) in the hippocampus. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) was employed to detect the apoptosis of hippocampal neurons. Western blot was employed to determine the protein levels of brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine kinase receptor B/tyrosine kinase receptor B (p-TrkB/TrkB), phosphorylated protein kinase B/protein kinase B (p-Akt/Akt), phosphorylated mammalian target of rapamycin/mammalian target of rapamycin (p-mTOR/mTOR), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cysteinyl aspartate-specific proteinase-3 (Caspase-3), synaptophysin (Syn), and PSD95. ResultCompared with the control group, the modeling decreased the sucrose preference rate, time spent in central zone within 5 min, total movement distance, time spent in the open arm, and cognition index (P<0.01). Furthermore, it decreased the expression of PSD95, increased the neuron apoptosis in the hippocampus (P<0.01), down-regulated the protein levels of BDNF, p-TrkB/TrkB, p-Akt/Akt, p-mTOR/mTOR, Bcl-2, PSD95, and Syn (P<0.01), and up-regulated the protein levels of Bax and Caspase-3 (P<0.05) in the hippocampus. Compared with the model group, Wenyang Jieyu prescription and fluoxetine increased the sucrose preference rate, time spent in central zone within 5 min, total movement distance, time spent in the open arm, and cognition index (P<0.05, P<0.01). Moreover, the drugs increased the expression of PSD95, reduced the neuron apoptosis (P<0.01), up-regulated the protein levels of BDNF, p-TrkB/TrkB, p-Akt/Akt, p-mTOR/mTOR, Bcl-2, PSD95, and Syn (P<0.01), and down-regulated the protein levels of Bax and Caspase-3 (P<0.01). ConclusionWenyang Jieyu prescription outperformed Wenyang prescription and Jieyu prescription in the treatment of the depressive behavior induced by maternal separation combined with restraint stress in mice. It exerted the therapeutic effect by reducing the hippocampal neuron apoptosis and improving the synaptic plasticity via the BDNF/Akt/mTOR pathway.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 101-108, 2024.
Article in Chinese | WPRIM | ID: wpr-1006560

ABSTRACT

ObjectiveTo investigate the promotional effect of astragaloside on the repair and healing of chronic non-healing wounds and its mechanism. MethodA total of 60 male SD rats were constructed with full-layer skin defect wounds on the back, and except for the control (Con) group, the rest were constructed with non-healing wounds, which were then randomly divided into the sham-operation (sham) group, the low-dose astragaloside group, the high-dose astragaloside group, the astragaloside + LY294002 [phosphatidylinositol 3-kinase (PI3K) inhibitor] group, and the astragaloside + EX527 [silencing regulatory protein 1 (SIRT1) inhibitor] group. The percentage of wound area in each group was observed on the 2nd, 4th, 6th, and 8th days after wound molding. Collagen type Ⅰ alpha 1 (COL1A1) and alpha smooth muscle actin (α-SMA) expressions in the wound tissue were detected by immunofluorescence. Hematoxylin and eosin (HE) staining was performed to determine the pathological structure of the wound. The mRNA expression of inflammatory factors in the wound was measured by real-time polymerase chain reaction (Real-time PCR), and the expression of proteins related to the SIRT1/ nuclear factor (NF)-κB and PI3K/protein kinase B (Akt) signaling pathways in the wound was tested by Western blot. ResultCompared with the sham group, the percentage of postoperative wound area of rats in both low-dose and high-dose astragaloside groups gradually decreased with time, and the efficacy of the high-dose astragaloside group was better. Compared with the Con group, the fluorescence intensity of COL1A1 in wound tissue of the sham group decreased, while the expression of α-SMA increased. The epithelial tissue was severely damaged, with an increase in the thickness, and a large number of inflammatory cells were seen in the infiltration. The mRNA expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase (iNOS) was elevated. The protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was elevated, while SIRT1 expression was decreased (P<0.05). Compared with the sham group, the fluorescence intensity of COL1A1 and α-SMA increased after astragaloside treatment. The number of epithelial cells increased, and the thickness decreased. The inflammatory cells decreased, and the amount of collagen increased. The mRNA expression of TNF-α, IL-1β, IL-6, and iNOS was decreased, and the protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was decreased. SIRT1 was elevated, and the effect was better in the high-dose astragaloside group (P<0.05). Compared with the high-dose astragaloside group, inhibition of the PI3K/Akt and SIRT1 pathways by LY294002 and EX527 prevented the therapeutic efficacy of astragaloside on chronic non-healing wounds. ConclusionThe topical application of astragaloside significantly promotes the healing of chronic non-healing wounds in rats, and the mechanism may be related to the activation of the PI3K/Akt pathway and the SIRT1/NF-κB pathway.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 253-261, 2024.
Article in Chinese | WPRIM | ID: wpr-1006578

ABSTRACT

Cerebral ischemia/reperfusion injury (CIRI) is a complex cascade reaction process in which the blood flow and oxygen supply of brain tissue in the infarcted area recover after cerebral ischemia, resulting in secondary injury of ischemic brain tissue. At present, thrombolysis as soon as possible and restoration of cerebral blood supply are still the only strategies for the treatment of stroke, but a considerable number of patients' symptoms will be more serious after reperfusion, making patients face adverse outcomes such as neurological function injury and even death and seriously affecting the quality of life and safety of patients. Therefore, an in-depth exploration of the mechanism and treatment strategy of CIRI has important clinical significance. The phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) signaling pathway is one of the classic anti-apoptosis/reproductive-promoting signal transduction pathways, which is responsible for cell proliferation, growth, and differentiation. It is the key cascade signaling pathway of CIRI, located at the core site in many mechanisms such as mitochondrial disorder, apoptosis, autophagy, oxidative stress, and inflammation. It is closely related to the occurrence and development of CIRI. Traditional Chinese medicine has been used in the clinical treatment of stroke and its complications for thousands of years, and the clinical effect of traditional Chinese medicine in the prevention and treatment of CIRI has been affirmed by a large number of research results in recent years. It is further clarified that the monomers, active components, and their compound prescriptions of traditional Chinese medicine can directly or indirectly regulate the PI3K/Akt signaling pathway by virtue of the biological advantages of multi-targets, multi-components, and multi-pathways and play an overall protective role in CIRI. By analyzing the related research progress of traditional Chinese medicine in China and abroad in recent years, the authors summarized the role and mechanism of regulating the PI3K/Akt signaling pathway in the prevention and treatment of CIRI, so as to provide further theoretical basis for the study of the mechanism of clinical prevention and treatment of CIRI.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 120-128, 2024.
Article in Chinese | WPRIM | ID: wpr-1016837

ABSTRACT

ObjectiveTo observe the effect of modified Tianwang Buxindan (MTBD) on the skin of sleep-deprived (SD) mice and investigate its mechanism. MethodSixty 2-month-old female Kunming mice were randomly divided into a blank group, a model group, a vitamin C (VC, 0.08 g·kg-1), and MTBD low-, medium-, and high-dose groups (6.5, 12.5, 25 g·kg-1). Except for the blank group, the other groups were subjected to SD mouse model induction (using multiple platform water environment method for 18 hours of sleep deprivation daily from 15:00 to next day 9:00), continuously for 14 days, and caffeine (CAF, 7.5 mg·kg-1) was injected intraperitoneally from the 2nd week onwards, continuously for 7 days. While modeling, the blank group and the model group were administered with normal saline (0.01 mL·g-1), and the other groups received corresponding drugs for treatment. On the day of the experiment, general observations were recorded (such as body weight, spirit, fur, and skin). After sampling, skin tissue pathological changes were observed under an optical microscope using hematoxylin-eosin (HE) and Masson staining methods. Skin thickness and skin moisture content were measured. Biochemical assay kits were used to detect skin hydroxyproline (HYP) content, skin and serum superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β levels in mice. Western blot was used to detect skin tissue type Ⅰ collagen (ColⅠ), type Ⅲ collagen (ColⅢ), phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-PI3K, protein kinase B (Akt), p-Akt, nuclear factor E2-related factor 2 (Nrf2), heme oxygenase (HO)-1, and nuclear factor (NF)-κB protein expression. ResultCompared with the blank group, the model group showed varying degrees of changes. In general, signs of aging such as reduced body weight (P<0.01), listlessness, dull fur color, and formation of wrinkles on the skin appeared. Tissue specimen testing revealed skin thinning, flattening of the dermoepidermal junction (DEJ), and reduced collagen fibers under the optical microscope. Skin thickness and moisture content decreased, skin tissue HYP content significantly decreased (P<0.01), skin and serum SOD activity significantly decreased (P<0.01), and MDA content significantly increased (P<0.01). Serum IL-6, TNF-α, and IL-1β levels significantly increased (P<0.01). Skin ColⅠ, ColⅢ, p-PI3K/PI3K, p-Akt/Akt, Nrf2, and HO-1 protein expression significantly decreased (P<0.05, P<0.01), and NF-κB expression increased (P<0.01). Compared with the model group, the VC group and the MTBD low-dose group showed increased skin moisture content, HYP content, SOD activity, and ColⅠ, ColⅢ, p-PI3K/PI3K protein expression (P<0.05, P<0.01), and decreased serum MDA content (P<0.05). In addition, a decrease in serum IL-6 and IL-1β levels was detected in the MTBD low-dose group (P<0.05), while the above indicators in the MTBD medium- and high-dose groups improved (P<0.05, P<0.01). ConclusionSleep deprivation accelerates the aging process of the skin in SD model mice. MTBD can improve this phenomenon, exerting anti-inflammatory and antioxidant effects, and its mechanism of action may be related to the activation of the PI3K/Akt/Nrf2 signaling pathway.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 156-165, 2024.
Article in Chinese | WPRIM | ID: wpr-1016841

ABSTRACT

ObjectiveKey microRNAs (miRNAs) of colorectal adenoma (CRA) were identified and analyzed by bioinformatics methods, and differentially expressed genes (DEGs) were screened to construct regulatory relationships. The mechanism of Xiezhuo Jiedu recipe in preventing CRA was speculated and verified by animal experiments. MethodThe miRNAs dataset GSE50194 was obtained from the Gene Expression Omnibus (GEO) database of intestinal mucosal tissue of CRA patients, and the differentially expressed miRNAs were screened by GEO2R and Excel. TargetScan, miRTarbase, and miRDB databases were used to predict the target genes of the differentially expressed miRNAs, and an intersection was obtained. Key DEGs were screened through the STRING database and Cytoscape software, and the TRRUST database was used to predict downstream binding transcription factors (TFs). The mRNA intersection was enriched by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) in the Metascape database. DIANA TOOLS were applied to perform KEGG enrichment analysis of key miRNAs, and the key signaling pathways were selected for animal experiments. In animal experiments, the CRA mice model was established by using sodium glycan sulfate (DSS) drinking combined with intraperitoneal injection of azomethane oxide (AOM), and Xiezhuo Jiedu recipe and aspirin were given by intragastric administration at the same time. The experiment lasted for nine weeks. The pathological changes in intestinal tissue were observed by hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of miR-34a-5p in adenoma tissue. Protein expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), phosphoryl-PI3K (p-PI3K), phosphoryl-Akt (p-Akt), and B cell lymphoma (Bcl)-2 were detected by Western blot. The expression of Cyclin D1 (CCND1) was detected by immunohistochemistry (IHC). In situ terminal transferase labeling (TUNEL) was used to detect apoptosis of adenoma tissue cells. ResultThe GEO database screened the GSE50194 dataset, and miR-34a-5p was selected as the research object from CRA and normal tissue. A total of 93 DEGs were selected. Among them, GO and KEGG enrichment analyses were closely related to biological processes such as transcriptional regulatory complex, RNA polymerase Ⅱ transcriptional regulatory complex, enzyme-linked receptor protein signaling pathway, and DNA-binding transcriptional activator activity, cancer pathway, PI3K/Akt pathway, etc. miR-34a-5p is mainly enriched in PI3K/Akt, cell cycle, and colorectal cancer pathways. Five key DEGs were screened out through the Matescape database, among which Bcl-2 and CCND1 were the key DEGs of miR-34a-5p. Further screening of the TFs of key DEGs revealed that E2F transcription factor 1 (E2F1) and tumor protein P53 (TP53) were the main TFs of Bcl-2 and CCND1. Animal experiments showed that Xiezhuo Jiedu recipe could effectively up-regulate mRNA level of miR-34a-5p, down-regulate the expression of PI3K, Akt, Bcl-2, p-PI3K, and p-Akt proteins in the intestinal tissue of CRA mice, down-regulate the positive expression rate of CCND1, and increase the apoptosis rate of intestinal epithelial cells. ConclusionIt is speculated that Xiezhuo Jiedu recipe may inhibit the abnormal proliferation and promote the apoptosis of intestinal epithelial cells in CRA mice by regulating the miR-34a-5p/PI3K/Akt signaling pathway, thus playing a role in the prevention of CRA.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 62-69, 2024.
Article in Chinese | WPRIM | ID: wpr-1017164

ABSTRACT

ObjectiveTo observe the protective effect of Didang Xianxiong decoction on the kidneys of diabetic rats, its regulation on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and its influence on podocyte apoptosis and explore the mechanism of Didang Xianxiong decoction in improving diabetic nephropathy. MethodThe diabetic model was established by a single intraperitoneal injection of streptozotocin (STZ) solution of 55 mg·kg-1. The successfully replicated model rats were randomly divided into the model group, Didang Xianxiong decoction group (8.10 g·kg-1), Xiao Xianxiongtang group (4.05 g·kg-1), Didangtang group (4.05 g·kg-1), and alagebrium (ALT-711) group (3 mg·kg-1), with six rats in each group. In addition, six rats were included in the blank group. After continuous administration for eight weeks, hematoxylin-eosin (HE) staining was used to observe the pathological changes in rats' kidney tissue. Masson staining was used to observe the degree of collagen deposition. Periodic acid-Schiff (PAS) staining was used to observe basement membrane lesions, and immunohistochemistry was used to detect the expression of phosphorylation (p)-PI3K and p-Akt proteins in rats' kidney tissue. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) method was used to detect podocyte apoptosis. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of PI3K and Akt in rats' kidney tissue. Western blot was used to detect the protein expression of PI3K, p-PI3K, Akt, p-Akt, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), phosphorylation glycogen synthase kinase-3β (p-GSK-3β), and Caspase-3 in the kidney tissue. ResultCompared with the normal group, the model group had compensatory expansion of glomeruli, proliferation of mesangial cells, a large amount of collagen deposition in the mesangial stroma, thickening of the basement membrane, decreased mRNA expression of PI3K and Akt, and inhibition of PI3K and Akt protein phosphorylation (P<0.01). It also underwent enhanced apoptotic signaling, decreased expression of anti-apoptotic protein Bcl-2 (P<0.01), and increased expression of Bax, p-GSK-3β, and Caspase-3 (P<0.01). Compared with the model group, Didang Xianxiong decoction significantly improved kidney tissue pathology, increased mRNA expression of PI3K and Akt (P<0.01), significantly up-regulated phosphorylation levels of PI3K and Akt proteins (P<0.01) and Bcl-2 expression (P<0.01), downregulated the expression of Bax, p-GSK-3β, and Caspase-3 (P<0.01), and weakened podocyte apoptotic signaling. ConclusionDidang Xianxiong decoction may promote the activation of the PI3K/Akt signaling pathway, inhibit podocyte apoptosis, and thus slow down the progression of diabetic nephropathy.

15.
Journal of Jilin University(Medicine Edition) ; (6): 113-119, 2024.
Article in Chinese | WPRIM | ID: wpr-1017326

ABSTRACT

Objective:To discuss the effect of downregulating the proline-rich protein 11(PRR11)expression on drug resistance of the esophageal cancer drug resistant cells,and to clarify the related mechanism.Methods:The drug resistant cells EC9706/cisplatin(DDP)were established by incrementally stimulating the human esophageal cancer EC9706 cells with the increasing concentrations of DDP.The drug sensitivity of the EC9706/DDP cells was detected by MTT assay;the expression levels of PRR11 mRNA and protein in the EC9706/DDP cells and their parent EC9706 cells were detected by real-time fluorescence quantitative PCR(RT-qPCR)and Western blotting methods.The EC9706/DDP cells were divided into control group,sh-NC group(infected with sh-NC),sh-PRR11 group(infected with sh-PRR11),sh-NC+DDP group(infected with sh-NC and treated with 4 mg·L-1 DDP),and sh-PRR11+DDP group(infected with sh-PRR11 and treated with 4 mg·L-1 DDP).The expression levels of PRR11 mRNA in the cells in various groups were detected by RT-qPCR method;the expression levels of PRR11,phosphoinositide 3-kinase(PI3K)p110α,protein kinase B(AKT),phosphorylated AKT(p-AKT),P-glycoprotein(P-gp),and multidrug resistance-associated protein 1(MRP1)proteins in the cells in various groups were detected by Western blotting method;the apoptotic rates of the cells in various groups were detected by flow cytometry.Results:The DDP-resistant cell line EC9706/DDP was successfully obtained,and the drug resistance index was 7.23±0.86.Compared with the EC9706 cells,the expression levels of PRR11 mRNA and protein in the EC9706/DDP cells were increased(P<0.05).Compared with control and sh-NC groups,the expression levels of PRR11 mRNA and protein in the cells in sh-PRR11 group were decreased(P<0.05),and the 50%inhibitory concentration(IC50)of DDP was decreased(P<0.05).Compared with sh-NC group,the expression levels of PI3K p110α,p-AKT,P-gp,and MRP1 proteins in the cells in sh-NC+DDP and sh-PRR11 groups were decreased(P<0.05),and the apoptotic rate of the cells was increased(P<0.05).Compared with sh-NC+DDP group and sh-PRR11 group,the expression levels of PI3K p110α,p-AKT,P-gp,and MRP1 proteins in the cells in sh-PRR11+ DDP group were increased(P<0.05),and the apoptotic rate of the cells was increased(P<0.05).Conclusion:Downregulating the expression of PRR11 gene in the drug resistant EC9706/DDP cells can inhibit the expressions of drug resistance-related proteins,reverse the resistance to DDP,and induce the apoptosis;its mechanism may be related to the inhibition of activation of the PI3K/AKT signaling pathway.

16.
Journal of Jilin University(Medicine Edition) ; (6): 143-149, 2024.
Article in Chinese | WPRIM | ID: wpr-1017330

ABSTRACT

Objective:To discuss the effect of downregulating of high mobility group box protein 2(HMGB2)expression on the biological behavior of the liver cancer cells and the epithelial-mesenchymal transition(EMT)process,and to clarify its mechanism.Methods:The human liver cancer LM3 cells at logarithmic growth phase were divided into negative control group and HMGB2 RNA interference group(HMGB2 siRNA group);the cells in two groups were transfected with RNA oligonucleotides(RNA oligos)with irrelevant sequences and RNA oligos designed to knock down HMGB2,and the Lipofectamine 2000 was regarded as the vector.The expression levels of HMGB2 mRNA and protein in the cells in two groups were detected by real-time fluorescence quantitative PCR(RT-qPCR)and Western blotting methods;cell scratch assay and Transwell chamber assay were used to detect the migration and invasion abilities of the cells in two groups;the expression levels of E-cadherin,N-cadherin,and Vimentin proteins and protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway related proteins in the cells in two groups were detected by Western blotting method.Results:Compared with negative control group,the expression levels of HMGB2 mRNA and protein in the cells in HMGB2 siRNA group were significantly decreased(P<0.05),the cell scratch healing rate was significantly decreased(P<0.01),the number of invasion cells was significantly decreased(P<0.01),and the expression level of E-cadherin protein in the cells was significantly increased(P<0.01),while the expression levels of N-cadherin,Vimentin,mTOR,AKT,and phosphorylated AKT(p-AKT)proteins in the cells were significantly decreased(P<0.05 or P<0.01).Conclusion:Downregulating the expression of HMGB2 can reduce the migration and invasion abilities of the liver cancer LM3 cells and inhibit the EMT,and its mechanism may be related to regulating the expression of the AKT/mTOR pathway related proteins.

17.
Chongqing Medicine ; (36): 232-238, 2024.
Article in Chinese | WPRIM | ID: wpr-1017470

ABSTRACT

Objective To investigate the expression of PIK3CA,phosphorylated protein kinase B(p-AKT)and phosphatase and tensin homologue deleted on chromosome 10(PTEN)in sinonasal squamous cell carcinoma(SNSCC).Methods The expressions of PIK3CA and PTEN in head and neck squamous cell carci-noma(HNSCC)were analyzed through the data set of HNSCC in the cancer genome map of UCSC Xena data-base.The immunohistochemical SP method was used to measure the expression of PIK3CA,p-AKT and PTEN in 43 cases of SNSCC tissues,20 cases of normal inferior concha tissues.The relationship between the expressions of PIK3CA,p-AKT and PTEN protein with the clinicopathological features and prognosis of the patients with SNSCC was analyzed.Results The results of bioinformatic analysis showed that PIK3CA mR-NA expression in HNSCC tissues was higher than that in paracancerous tissues(P<0.01),while the PTEN mRNA expression was lower than that in paracancerous tissues(P<0.05).The immunohistochemical detec-tion results showed that the positive expressions rates of PIK3CA and p-AKT proteins in normal nasal mucosa tissues were significantly lower than those in SNSCC tissues,while the positive expression rate of PTEN pro-tein in SNSCC tissues was significantly higher than that in normal inferior nasal concha mucosa tissues,and the differences were statistically significant(P<0.01).The expressions of PIK3CA and p-AKT protein were related to the clinical stage,differentiation degree and primary site(P<0.05),but were not related to age,gender,smoking and drinking(P>0.05);the PTEN protein expression was not related with the clinical stage,differentiation degree,primary site,age,smoking and drinking(P>0.05).The Spearman analysis showed that the expression of PIK3CA in SNSCC tissues was positively correlated with p-AKT protein ex-pression(r=0.664,P<0.01),and PIK3CA was negatively correlated with PTEN protein(r=-0.414,P<0.01).The expression of p-AKT was negatively correlated with PTEN protein(r=-0.453,P<0.01).The Kaplan-Meier analysis showed that the median survival time of the patients with PIK3CA and p-AKT protein positive expression was shorter than that of the patients with negative expression(P<0.01).There was no statistically significant difference in median survival between the patients with PTEN protein positive expres-sion and those with negative expression.Conclusion The overexpressions of PIK3CA and p-AKT accompa-nied by the loss of PTEN expression participate in the development and progression of SNSCC,moreover the PIK3CA and p-AKT expressions are related to the poor prognosis of the patients.

18.
Basic & Clinical Medicine ; (12): 308-316, 2024.
Article in Chinese | WPRIM | ID: wpr-1018614

ABSTRACT

Objective To evaluate the regulatory effect of the adaptor related protein complex 2 subunit μ1(AP2M1)on proliferation and invasion of diffuse large B-cell lymphoma(DLBCL).Methods Human diffuse large B-cell lymphoma cell line OCI-LY8 was aliquoted into control group,NC-shRNA group,AP2M1-shRNA group,NC-LV group,and AP2M1-LV group.Lipofectamine 2000 was used for cell transfection.Cell proliferation was detected by tetramethylazolium salt(MTT)method,apoptosis was detected by flow cytometry and cell migration and invasion were detected by Transwell assay.The protein expression of AP2M1,epidermal growth factor receptor(EGFR),p-phosphatidylinositol 3 kinase(PI3K),PI3K,p-protein kinase B(Akt)and AKT was detec-ted by Western blot.Results Compared with control group,the relative expression of AP2M1 mRNA and protein in the AP2M1-shRNA group was decreased(P<0.05).The relative cell viability was increased(P<0.05).The cell apoptosis rate was decreased(P<0.05).The counting number of migrating and invading cells was in-creased(P<0.05).The relative expression level of EGFR protein and the phosphorylation level of PI3K and AKT were increased(P<0.05).Compared with Control group,the expression of AP2M1 mRNA and protein relative ex-pression level in AP2M1-LV group was increased(P<0.05).The relative cell viability was decreased(P<0.05).The cell apoptosis rate was increased(P<0.05).The number of migrating and invading cells was decreased(P<0.05).The relative expression level of EGFR protein and the phosphorylation level of PI3K and AKT were all decreased(P<0.05).Conclusions The over-expression of AP2M1 partially inhibits the proliferation and invasion of DLBCL cells by inhibiting the EGFR/PI3K/AKT signaling pathway.

19.
Basic & Clinical Medicine ; (12): 489-495, 2024.
Article in Chinese | WPRIM | ID: wpr-1018643

ABSTRACT

Objective To explore the therapeutic effect and mechanism of pachymic acid(PA)on Helicobacter py-lori(Hp)-associated gastritis in rats.Methods A rat model of Hp-associated gastritis was established;all rats were separated into control group(CT group),model group(group M),PA low-dose group(PA L group),PA high-dose group(PA H group),and PA H+phosphatidylinositol 3-kinase(PI3K)activator(740 Y-P)group;the gastric mucosal injury index(UI)of rats in each group was evaluated,transmission electron microscopy was applied to observe the morphology of gastric mucosal cells.HE staining was applied to evaluate the pathological characteristics of gastric mucosa.ELISA was applied to detect the levels of interleukin-6(IL-6),tumor necrosis factor-α(TNF-α),IL-10,induc-ible nitric oxide synthase(iNOS),and superoxide dismutase(SOD)in gastric tissue.Western blot method was applied to detect the expression of PI3K,phosphorylated PI3K(p-PI3K),protein kinase B(AKT),p-AKT,nuclear factor(NF)-κB p65,and p-NF-κB p65 proteins.Results Compared with the CT group,the gastric mucosa erosion,epithelial ede-ma,congestion,and severe ulcers were observed in the group M,with epithelial cell pyknosis and inflammatory cell in-filtration,the UI,IL-6,TNF-α,iNOS,and the expression levels of p-PI3K/PI3K,p-AKT/AKT,p-NF-κB p65/NF-κB p65 proteins increased,the levels of IL-10 and SOD decreased(P<0.05);compared with group M,the gastric mucosal damage and inflammatory cell infiltration in the PA L and PA H groups were improved,the UI,IL-6,TNF-α,iNOS by the host animal and the expression of p-PI3K/PI3K,p-AKT/AKT,p-NF-κB p65/NF-κB p65 proteins all decreased,the level of IL-10 and SOD was increased(P<0.05);compared with the PA H group,the pathological damage of the gastric mucosa in the PA H+740 Y-P group was aggravated,with epithelial cell pyknosis.The UI,IL-6,TNF-α,iNOS,and the expression of p-PI3K/PI3K,p-AKT/AKT,p-NF-κB p65/NF-κB p65 proteins increased,the levels of IL-10 and SOD decreased(P<0.05).Conclusions PA might facilitate the treatment of Hp-associated gastritis in rats by inhibiting the PI3K/AKT/NF-κB signaling pathway.

20.
Journal of Interventional Radiology ; (12): 44-51, 2024.
Article in Chinese | WPRIM | ID: wpr-1018804

ABSTRACT

Objective To discuss the effect of PI3K-AKT signaling pathway regulated by microRNA-155(miRNA-155)targeted protein tyrosine phosphatase non-receptor type 21(PTPN21)on the proliferation,migration and invasion of hepatocellular carcinoma(HCC)cells.Methods Lentivirus transfection was used to silence the expression of miRNA-155 in human Huh7 HCC cells,and real-time fluorescent quantitative polymerase chain reaction(RT-qPCR)was used to detect the silencing effect of miR-155.After obtaining stable cell lines,the cell lines were randomly divided into Blank group(normal Huh7 cells),shNC group(Huh7 cells+empty miR-155 vector),sh-miR-155(Huh7 cells+miR-155 silencing),sh-miR-155+Recilisib group(Huh7 cells+miR-155 silencing+PI3K-AKT agonist),shNC+Recilisib group(Huh7 cells+empty miR-155 vector+PI3K-AKT agonist).Dual luciferase assay was used to determine whether PTPN21 was the downstream of miR-155.The cell proliferation ability of cells in each group was detected by MTT assay.The apoptosis level of each group was tested by flow cytometry.The invasion and migration ability of cells was assessed by Transwell assay.Western blot analysis was used to observe the differences in protein expression of PTPN21,PI3K,P-PI3K,AKT,P-AKT,and apoptosis-related proteins including BAX,BCL-2 and caspase-3 in all groups.Results The expression level of miR-155 in sh-miR-155 group was lower than that in Blank group and shNC group(P<0.000 1),and the difference in miR-155 expression level between Blank group and shNC group was not statistically significant(P>0.05).MTT results showed that A values of Huh7 cells at 2,3,4 and 5 day in sh-miR-155 group were lower than those in Blank group and shNC group(P<0.000 1),while these differences between Blank group and shNC group were not statistically significant(P>0.05).In sh-miR-155 group the A values at 2,3,4 and 5 day were lower than those in sh-miR-155+Recilisib group and shNC+Recilisib group(P=0.0052 and P<0.0001,respectively),while the A values at 2,3,4 and 5 day in sh-miR-155+Recilisib were lower than those in shNC+Recilisib group(P<0.000 1).There was no significant differences in cell migration and number of invasion cells between the Blank group and shNC group(P>0.05).After activation of PI3K-AKT signaling pathway,the migration and invasion capacity of HCC cells in the shNC+Recilisib group were significantly enhanced when compared with the Blank group(P<0.000 1).In contrast,the number of migrated and invaded Huh7 cells after miR-155 silencing was significantly lower than that in the Blank group and shNC group(P<0.000 1)and this phenomenon became reversed by PI3K agonist.Compared with the sh-miR-155 group,in the sh-miR-155+Recilisib group the migration and invasion ability of HCC cells was enhanced(P=0.000 2).Lentiviral transfection of Huh7 human HCC cells to silence miR-155 and downregulate miR-155 inhibiting PTPN21 regulation of the PI3K-AKT signaling pathway,thus inhibiting the invasion,migration and proliferation ability of HCC cells and promoting the apoptosis of HCC cells.Conclusion miR-155 inhibits the migration,invasion and proliferation of HCC cells through targeting PTPN21 regulation of PI3K-AKT signaling pathway.The miR-155 may be a potential therapeutic target for HCC in the future.(J Intervent Radiol,2024,32:44-51)

SELECTION OF CITATIONS
SEARCH DETAIL