Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Medical Biomechanics ; (6): E440-E445, 2019.
Article in Chinese | WPRIM | ID: wpr-802479

ABSTRACT

Vibration represents a micro reciprocating motion of a particle or object along a line or arc relative to a reference position, while the effect of low-magnitude high-frequency vibration (LMHFV) on skeletal system cells is similar to the mechanical stimulation of muscle movement. Bone mesenchymal stem cells (BMSCs), which have been identified as force-sensitive cells, exist in the bone marrows and have the potential of multi-lineage differentiation. Their biological characteristics can change functionally according to the appropriate stimulation in vitro, in order to reach the optimal demand of the stimulation. LMHFV can promote the osteogenic differentiation of BMSCs, therefore, the research on its mechanism can contribute to the application of vibration in the treatment of diseases such as osteoporosis, fracture, osteogenesis imperfecta, obesity as well as the promotion of orthodontic tooth movement. This paper summarizes the recent progress about the effects of vibration on BMSCs stem cells in osteogenesis and the possible mechanisms, so as to provide research ideas and methods for studying the mechanical as well as biological changes of BMSCs under vibration stimulation.

2.
Journal of Medical Biomechanics ; (6): E440-E445, 2019.
Article in Chinese | WPRIM | ID: wpr-802376

ABSTRACT

Vibration represents a micro reciprocating motion of a particle or object along a line or arc relative to a reference position, while the effect of low-magnitude high-frequency vibration (LMHFV) on skeletal system cells is similar to the mechanical stimulation of muscle movement. Bone mesenchymal stem cells (BMSCs), which have been identified as force-sensitive cells, exist in the bone marrows and have the potential of multi-lineage differentiation. Their biological characteristics can change functionally according to the appropriate stimulation in vitro, in order to reach the optimal demand of the stimulation. LMHFV can promote the osteogenic differentiation of BMSCs, therefore, the research on its mechanism can contribute to the application of vibration in the treatment of diseases such as osteoporosis, fracture, osteogenesis imperfecta, obesity as well as the promotion of orthodontic tooth movement. This paper summarizes the recent progress about the effects of vibration on BMSCs stem cells in osteogenesis and the possible mechanisms, so as to provide research ideas and methods for studying the mechanical as well as biological changes of BMSCs under vibration stimulation.

3.
Journal of Medical Biomechanics ; (6): E145-E151, 2012.
Article in Chinese | WPRIM | ID: wpr-803957

ABSTRACT

Objective To investigate the effects of low-magnitude high-frequency vibration (LMHFV) on osteoporotic fracture healing and blood supply of distal injured limbs based on osteoporosis fracture model of the ovariectomized (OVX) rats. Methods Ovariectomy was performed in 32 six-month-old female SD rats. 3 months later, closed transverse fractures were created at the right femoral midshafts complicated by femoral artery injuries. The rats were then randomly divided into vibration group and control group. Radiographs were performed in each week to assess the callus size and the status of fracture healing. At 2nd, 4th and 8th week after treatment, pulsed-wave Doppler ultrasonography was utilized to evaluate the blood flow velocity and the resistance index (RI) of the distal femoral artery in injured limbs. The peri-fracture region was reconstructed by Micro-CT for both qualitative and quantitative analysis. Results Pulsed-wave Doppler indicated a significantly higher peak systolic velocity of distal femoral artery in vibration group at 2nd and 4th week (P<0.05) and a lower RI as compared with control group.Radiography and Micro-CT analysis demonstrated that vibration group had better callus formation, mineralization, remodeling, and bridging rate during fracture healing as compared with control group. Conclusions LMHFV can effectively improve the blood supply of distal injured limbs and promote the osteoporotic fracture healing.

SELECTION OF CITATIONS
SEARCH DETAIL