Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add filters








Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 45-53, 2024.
Article in Chinese | WPRIM | ID: wpr-1003765

ABSTRACT

ObjectiveTo explore the protective mechanism of paeoniflorin on mice with ulcerative colitis (UC) through the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) autophagy pathway. MethodUC mouse model was established by allowing mice freely drink 4% DSS, and 56 BALB/c male mice were randomly divided into model group, AMPK inhibitor group (20 mg·kg-1), paeoniflorin (50 mg·kg-1) + inhibitor (20 mg·kg-1) group, and high dose (50 mg·kg-1), medium dose (25 mg·kg-1), and low dose (12.5 mg·kg-1) paeoniflorin groups. After seven days of drug intervention, the protective effect of paeoniflorin on mice with UC was determined by comparing the body weight, disease activity index (DAI) changes, and Hematoxylin-eosin (HE) staining results. Enzyme linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum of mice in each group, and immunofluorescence was utilized to detect microtubule-associated protein 1 light chain 3 (LC3) content in the colon, AMPK, mTOR proteins, and their phosphorylated proteins including p-AMPK and p-mTOR in the colon tissue were detected by Western blot, and the mRNA expression levels of AMPK, mTOR, Beclin1, LC3, and p62 were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultCompared with the blank group, the model group showed a decrease in body mass, an increase in DAI score, and severe pathological damage to the colon. The levels of inflammatory factors including TNF-α and IL-6 increased in serum (P<0.01), while the protein levels of LC3 and p-AMPK/AMPK were down-regulated in colon tissue, and those of p-mTOR/mTOR were up-regulated (P<0.01). The mRNA expression levels of AMPK and LC3 were down-regulated, while the mRNA expression levels of mTOR and p62 were up-regulated (P<0.01). Compared with the model group and the paeoniflorin + inhibitor group, the mice treated with paeoniflorin showed an increase in body mass, a decrease in DAI score, a reduction in pathological damage to colon tissue, and a reduction in the levels of inflammatory factors of TNF-α and IL-6 in serum (P<0.05). The protein levels of LC3 and p-AMPK/AMPK in colon tissue were up-regulated, while the protein levels of p-mTOR/mTOR were down-regulated (P<0.01). The mRNA expression levels of AMPK, Beclin1, and LC3 were up-regulated, while the mRNA expression of mTOR and p62 were down-regulated (P<0.01). The colon tissue of the inhibitor group was severely damaged, and the trend of various indicators was completely opposite to that of the high dose paeoniflorin group. ConclusionPaeoniflorin can enhance autophagy and reduce inflammatory damage in mice with UC by activating the AMPK/mTOR signaling pathway and thus play a protective role.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 110-117, 2024.
Article in Chinese | WPRIM | ID: wpr-1003414

ABSTRACT

ObjectiveTo observe the effects of Hirudo, Notoginseng Radix et Rhizoma, and drug pair on renal pathological morphology and protein phosphatase 2A (PP2A)/adenylate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signal pathway in rats with chronic renal failure (CRF). MethodThe 55 male SD rats were randomly divided into a normal group (n=11) and a modeling group (n=44). The normal group was fed conventionally, and the modeling group was given 0.25 g·kg-1·d-1 adenine by gavage for 28 days to replicate the CRF model. After successful modeling, rats were randomly divided into model group, Hirudo group (3 g·kg-1·d-1), Notoginseng Radix et Rhizoma group (3 g·kg-1·d-1), and Hirudo + Notoginseng Radix et Rhizoma group (3 g·kg-1·d-1), with 9 rats in each group. The normal group and model group were given a constant volume of normal saline by intragastric administration for 30 days. At the end of the experiment, the levels of serum creatinine (SCr) and urea nitrogen (BUN) in all groups were measured. The renal pathological morphology changes were observed by hematoxylin-eosin (HE) staining, Masson staining, and electron microscopy. The mRNA expressions of PP2A, AMPK, and mTOR were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The protein expression levels of PP2A, AMPK, phosphorylation(p)-AMPK, mTOR, and p-mTOR in renal tissue were detected by Western blot. ResultCompared with the normal group, the renal pathological structure changes were obvious, and the levels of SCr and BUN were significantly increased. The mRNA expression of PP2A, protein expression of PP2A, and p-mTOR/mTOR expression were significantly increased, and the p-AMPK/AMPK was significantly decreased in the model group (P<0.05). Compared with the model group, the renal pathological morphology changes were significantly improved, and the levels of SCr and BUN were significantly decreased. The mRNA expression of PP2A, protein expression of PP2A, and p-mTOR/mTOR expression in the renal tissue were significantly decreased, and the p-AMPK/AMPK was significantly increased (P<0.05) in all groups after drug intervention. In addition, the effect in the Hirudo+Notoginseng Radix et Rhizoma group was better. The mRNA expression levels of AMPK and mTOR in the renal tissue were not significantly different among the normal group, model group, and other groups. ConclusionThe efficacy of Hirudo and Notoginseng Radix et Rhizoma pairs in improving renal fibrosis in rats with CRF is significantly better than that of the single drug, and its improvement on renal fibrosis in rats with CRF may be related to the regulation of PP2A/AMPK/mTOR signaling pathway.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 253-263, 2023.
Article in Chinese | WPRIM | ID: wpr-997679

ABSTRACT

Osteoporosis (OP), a common systemic skeletal disease in the elderly, is characterised by bone loss and bone microstructural degeneration. Its clinical manifestations include increased bone fragility and bone pain. Furthermore, OP increases the risk of fracture due to the high bone fragility, which leads to lifelong disability or death, imposing a heavy economic and psychological burden on the patients and their families. The pathogenesis of OP is extremely complex and associated with a variety of factors such as proliferation and differentiation of osteoblasts, impairment of osteoclast activity and function, and abnormalities in autophagy activation. Recent studies have found that mammalian target of rapamycin (mTOR) signaing pathway is involved in the regulation of bone homeostasis, which can promote bone formation and improve bone metabolism and bone microstructure by regulating osteoblast proliferation and differentiation and osteoclast function and activating cellular autophagy, thus playing a crucial role in the prevention and treatment of OP. The prevention and treatment of OP with Chinese medicine has a long history, clear efficacy, multiple targets of action, low adverse effects, and wide medicine sources. Therefore, this paper briefly describes the role of mTOR signaling pathway in the development of OP by reviewing the latest research reports and summarizes in detail the latest research results on the treatment of OP with Chinese medicine extracts and prescriptions via the mTOR signaling pathway. This review aims to provide a basis for the in-depth research on the relationship between mTOR signaling pathway and OP and the clinical application of traditional Chinese medicine in the prevention and treatment of OP.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 78-84, 2023.
Article in Chinese | WPRIM | ID: wpr-973135

ABSTRACT

ObjectiveTo study the mechanism of Danggui Sinitang in mitigating gouty arthritis (GA) in rats by regulating autophagy via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. MethodSixty male SD rats were randomly assigned into normal, model, colchicine (0.3 mg·kg-1), and low-, medium-, and high-dose Danggui Sinitang (6.54, 13.08, and 26.16 g·kg-1) groups (n=10) and administrated with corresponding drugs by gavage. The rats in the normal group and model group were administrated with equal volume of normal saline by gavage for 7 days. One hour after administration on day 5, the GA model was established by injecting sodium urate suspension (50 g·L-1) into the right ankle joint of rats in other groups except the normal group, and the rats in the normal group were injected with sterile normal saline of the same volume. The swelling and pathological changes of the ankle joint were observed. The serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β were determined. Western blot was employed to determine the protein levels of PI3K, phosphorylated PI3K (p-PI3K), protein kinase B (Akt), phosphorylated Akt (p-Akt), mTOR, phosphorylated mTOR (p-mTOR), microtubule-associated protein 1 light chain 3 Ⅱ/Ⅰ (LC3Ⅱ/Ⅰ), autophagy effector Beclin-1, and ubiquitin-binding protein p62 in the synovial tissue. Real-time fluorescent quantitative PCR (Real-time PCR) was employed to determine the mRNA levels of PI3K, Akt, mTOR, LC3, Beclin-1 and p62. ResultCompared with the normal control, the model group showed increased joint swelling index (P<0.01), elevated serum levels of TNF-α, IL-6, and IL-1β, inflammatory cell infiltration, and fibrous tissue hyperplasia. In addition, the model group showed up-regulated protein levels of PI3K, p-PI3K, Akt, p-Akt, mTOR, p-mTOR, and p62 and mRNA levels of PI3K, Akt, mTOR, and p62 in the synovial tissue, while it showed down-regulated protein levels of LC3Ⅱ/Ⅰ and Beclin-1 and mRNA levels of LC3 and Beclin-1 (P<0.01). Compared with the model group, medium- and high-dose Danggui Sinitang alleviated the joint swelling (P<0.01), lowered the serum levels of TNF-α, IL-6, and IL-1β (P<0.05), and relieved the inflammatory cell infiltration in the synovial tissue of the ankle joint and the fibrous tissue hyperplasia. Moreover, they down-regulated the protein levels of PI3K, p-PI3K, Akt, p-Akt, mTOR, p-mTOR, and p62 and the mRNA levels of PI3K, Akt, mTOR, and p62 in the synovial tissue (P<0.05), while they up-regulated the protein levels of LC3Ⅱ/Ⅰ and Beclin-1 and the mRNA levels of LC3 and Beclin-1 (P<0.05). ConclusionDanggui Sinitang, especially at a high dose, can inhibit PI3K/Akt/mTOR signaling pathway to improve autophagy in the synovial tissue, thereby mitigating GA.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 277-282, 2023.
Article in Chinese | WPRIM | ID: wpr-980198

ABSTRACT

Diabetic kidney disease (DKD) is one of the typical microvascular complications in patients with diabetes and a major cause of end-stage renal disease, with the pathogenesis remains to be elucidated. It may be associated with hemodynamic effects, genetic factors, kidney inflammatory injury, oxidative stress, autophagy dysregulation, metabolic disorders and so on. Because of its complex mechanism, there are no specific prevention and treatment measures in clinical practice. AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway is a classical pathway involved in the regulation of autophagy. This pathway can be activated for treating DKD. Recent studies have demonstrated that the active components in Chinese medicinal herbs play a role in the prevention and treatment of DKD by directly acting on targeted cells and autophagy targets, which has attracted extensive attention. Researchers have extensively studied the occurrence and development of DKD and the mechanism of drug intervention in DKD, and the results prove that AMPK/mTOR pathway plays a role in the development of this disease. The active components in Chinese medicinal herbs regulate the AMPK/mTOR signaling pathway to affect autophagy, alleviate oxidative stress, inflammation, and extracellular matrix aggregation, and promote the generation of autophagosomes, thus mitigating kidney injury. This paper mainly reviews the relationship between AMPK/mTOR signaling pathway, autophagy, and DKD and the mechanism of active components in Chinese medicinal herbs in mediating autophagy via the AMPK/mTOR pathway, aiming to provide a theoretical basis for the clinical prevention and treatment of DKD.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 116-125, 2023.
Article in Chinese | WPRIM | ID: wpr-979456

ABSTRACT

ObjectiveTo investigate the effect of Shouwuwan on the synaptic plasticity of hippocampal neurons in the rat model of D-galactose-induced aging via the mammalian target of rapamycin (mTOR) signaling pathway. MethodA total of 50 male SPF-grade SD rats were randomized into normal group, model group, vitamin E (0.018 g·kg-1) group, and low- and high-dose (1.08,2.16 g·kg-1, respectively) Shouwuwan groups. Except the normal group, the other four groups were treated with D-galactose (120 mg·kg-1) for the modeling of aging. The rats were simultaneously administrated with corresponding agents by gavage. After six weeks of modeling, Morris water maze test was carried out to examine the behavioral changes. The whole brain and hippocampus samples were collected. The expression of postsynaptic density protein-95 (PSD-95) and synaptophysin (SYN) in the hippocampus was detected by immunohistochemistry. Golgi staining was employed to observe the changes in the morphology and function of neurons. Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were respectively employed to determine the mRNA and protein levels of mTOR, phosphorylated (p)-mTOR, p70 ribosome protein S6 kinase (p70S6K), phosphorylated (p)-p70S6K, eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2), and phosphorylated (p)-4EBP2 in the hippocampus. ResultCompared with the normal group, the model group showed slow swimming (P<0.01), extended total swimming distance (P<0.05), prolonged latency (P<0.01), and decreased crossing number (P<0.01). The modeling inhibited the expression of PSD-95 and SYN in the CA1 region of the hippocampus (P<0.01), with the weakest staining effect and the smallest region, decreased the intersections of hippocampal neuron dendrites with concentric circles at the concentric distance of 100, 140, 180, and 200 μm from the cell body (P<0.01), and reduced the length and density of dendritic spine (P<0.01). In addition, the modeling up-regulated the mRNA levels of mTOR and p70S6K and the protein levels of p-mTOR and p-p70S6K (P<0.01) and down-regulated the mRNA level of 4EBP2 and the protein levels of 4EBP2 and p-4EBP2 (P<0.01). Compared with the model group, low- and high-dose Shouwuwan increased the average swimming speed (P<0.01), shortened the latency (P<0.01), increased the crossing number (P<0.01), promoted the expression of PSD-95 and SYN in the hippocampal CA1 region (P<0.01), increased the intersections between hippocampal neuronal dendrites and concentric circles at the concentric distance of 100, 140, 180,200 μm from the cell body (P<0.01), and increased the number, length, and density of dendritic spine (P<0.01). Furthermore, Shouwuwan down-regulated the protein levels of p-mTOR and p-p70S6K (P<0.01), up-regulated the protein levels of 4EBP2 and p-4EBP2 (P<0.05,P<0.01), down-regulated the mRNA levels of mTOR and p70S6K (P<0.01), and up-regulated the mRNA level of 4EBP2 (P<0.01). ConclusionShouwuwan can improve the learning and memory ability of rats exposed to D-galactose, promote the expression of proteins associated with synaptic plasticity, improve the morphology of neurons, repair neural function, reduce neuronal apoptosis, and inhibit mTOR signaling pathway to delay brain aging.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 29-35, 2022.
Article in Chinese | WPRIM | ID: wpr-940826

ABSTRACT

ObjectiveTo observe the effects of Fuzitang (FZT) on the proliferation of MH7A cells, the human rheumatoid arthritis synovial fibroblasts, and the expression of miR-155 and explore its anti-rheumatoid arthritis mechanism. MethodMH7A cells were cultured in vitro and divided into a blank group, high- (25 g·L-1) and low-dose (12.5 g·L-1) FZT groups, and a positive drug group (hydroxychloroquine, 0.006 25 g·L-1). The cell proliferation was detected by cell counting kit-8(CCK-8) method, and the change in the MH7A cell cycle was detected by flow cytometry. The mRNA expression of miR-155 and its downstream genes, including SH2 domain-containing inositol 5-phosphatase-1(SHIP-1), protein kinase B 3(Akt3), and mammalian target of rapamycin(mTOR), was detected by Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the protein expression of phosphatidylinositol 3-kinase (PI3K), Akt3, and mTOR was detected by Western blot. ResultFZT in vitro in a concentration of 6.25 g·L-1 above could inhibit the proliferation of MH7A cells in the significant dose- and time-effect manner. Compared with the blank group, the FZT groups showed increased proportions of cells in the G2/M phase (P<0.05), and the high-dose FZT group showed a decreased proportion of cells in the G0/G1 phase (P<0.05). The arresting effect of FZT on the cell cycle was in a significant dose-effect manner. Compared with the blank group, the FZT groups showed down-regulated miR-155 and mTOR mRNA expression (P<0.05), and the high-dose FZT group showed up-regulated SHIP1 mRNA expression and down-regulated Akt3 mRNA expression (P<0.05). Compared with the blank group, the FZT groups showed reduced protein expression of PI3K, Akt3, and mTOR (P<0.05). ConclusionFZT can significantly inhibit the proliferation of MH7A cells, and the mechanism is related to the promotion of the expression of SHIP-1 and down-regulation of the gene expression of the PI3K/Akt3/mTOR signaling pathway by down-regulating the expression of miR-155.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 84-91, 2021.
Article in Chinese | WPRIM | ID: wpr-905930

ABSTRACT

Objective:To investigate the effect of Elian granule on autophagy and the phosphatidylinositol -3 kinase (PI3K)/protein kinase B (PKB/Akt)/mammalian target of rapamycin (mTOR) signaling pathway in gastric tissue of rats with gastric cancer. Method:SPF SD rats were randomly divided into the normal, model, Elian granule, and Weifuchun groups. In addition to the routine feeding in the normal group, the model, Elian granule, and Weifuchun groups received <italic>N</italic>-methyl-<italic>N</italic>'-nitro-<italic>N</italic>-nitrosoguanidine (MNNG) to induce gastric cancer in rats, and they were respectively given normal saline, Elian granule aqueous solution (3.240 g·kg<sup>-1</sup>) and Weifuchun aqueous solution (0.390 g·kg<sup>-1</sup>) by gavage (<italic>ig</italic>) for 48 weeks. The gross changes of the stomach taken by laparotomy were observed by naked eyes. Hematoxylin-eosin (HE) staining was performed to observe the histopathological changes of the gastric tissue in rats. Real-time quantitative polymerase chain reaction (Real-time PCR) and Western blot (WB) were used to detect the mRNA and protein expression of microtubule-associated protein 1 light chain 3 beta (LC3B), Beclin1, p62, PI3K, Akt, mTOR in rat gastric tissue. Result:Compared with the normal group, the model group showed gastric distension, thinner gastric wall, pale gastric mucosa, atrophied and flat folds, disordered course, and visible nodules and vegetations. Compared with the model group, the Elian granule group demonstrated alleviated gastric distension, dark gastric mucosa, reduced folds, and regular course, with the thinned gastric wall improved and granular nodules observed occasionally. According to HE staining, compared with the normal group, the model group showed crowded and disordered rat gastric glands, diverse in shape, varied cell morphology, basophilic cytoplasm, large irregular hyperchromatic nuclei, visible mitosis, and infiltrated and destroyed muscularis mucosae. While compared with the model group, the arrangement of gastric glands was regular, and a few mildly atypical cells could be observed in rats of the Elian granule group. Compared with the normal group, the model group exhibited decreased expression of LC3B and Beclin1 mRNA and protein in gastric tissue (<italic>P</italic><0.05), and increased expression of PI3K, p62, Akt, and mTOR mRNA and protein (<italic>P</italic><0.05). Compared with the model group, the Elian granule group showed increased expression of LC3B and Beclin1 mRNA and protein in gastric tissue (<italic>P<</italic>0.05), and decreased expression of PI3K mRNA and p62, Akt, and mTOR mRNA and protein (<italic>P</italic><0.05). Conclusion:Elian granule can improve the cell atypia of gastric tissue in rats with gastric cancer, and the mechanism may be related to the inhibition of the PI3K/Akt/mTOR signaling pathway to promote autophagy.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-6, 2021.
Article in Chinese | WPRIM | ID: wpr-905920

ABSTRACT

Objective:To observe the effect of Qigesan on the proliferation and apoptosis of the human esophageal cancer cell EC9706, and the effect on miR-133a/protein kinase B(Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Method:The effective constituent of Qigesan was extracted by ethyl acetate. Thiazolyl blue tetrazolium bromide(MTT) colorimetric assay was used to determine the dosage of Qigesan on cells and to detect the effect of Qigesan on the proliferation of EC9706 cells. The effect of Qigesan on apoptosis of EC9706 cells was detected by flow cytometry. The effect of Qigesan on miR-133a and insulin-like growth factor 1 receptor(IGF-1R) mRNA expression was detected by Real-time quantitative polymerase chain reaction (Real-time PCR) . The protein expression of Akt and mTOR in EC9706 cells was detected by Western blot. Result:Qigesan can inhibit the proliferation of EC9706 cells in a dose-dependent manner(<italic>P</italic><0.01). Inhibitory concentrations 30% inhibition concentration(IC<sub>30</sub>) 40 mg·L<sup>-1</sup> and median inhibition concentration(IC<sub>50</sub>) 80 mg·L<sup>-1</sup> were selected for follow-up experiments. Compared with the blank group, both the inhibitor group and the combination drug group can inhibit the proliferation of EC9706 cells (<italic>P</italic><0.01). The inhibitor at 0.25 μmol·L<sup>-1</sup> was selected for subsequent experiments. Compared with the blank group, Qigesan 80 mg·L<sup>-1</sup> dose group could significantly promote the late apoptosis rate and total apoptosis rate of EC9706 cells(<italic>P</italic><0.05), and the 40 mg·L<sup>-1</sup> dose group could significantly promote the late apoptosis rate of EC9706 cells(<italic>P</italic><0.05), which shows synergistic effect after concomitant use with Akt/mTOR inhibitor(<italic>P</italic><0.05). Compared with the blank control group, each group can effectively increase expression of miR-133a(<italic>P</italic><0.05). The combination of inhibitor and traditional Chinese medicine(TCM) has obvious promotion effect. Compared with blank control group, the expressions of Akt and mTOR were significantly decreased in each group(<italic>P</italic><0.05). Compared with single medication, the expressions of Akt and mTOR were decreased in combination of inhibitor and TCM group. Conclusion:Qigesan can inhibit the growth of EC9706 cells and promote apoptosis, and its inhibitory mechanism may be related to the Akt/mTOR signaling pathway by regulating the expression of miR-133a.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 83-89, 2019.
Article in Chinese | WPRIM | ID: wpr-802237

ABSTRACT

Objective: To investigate the anticancer effect of isoliquiritigenin (ISL) on human clear cell renal cell carcinoma 786-O cells, and explore its possible molecular mechanism. Method: Thiazolyl blue tetrazolium bromide (MTT) assay was used to detect effect of ISL (0, 10, 25,50, 75, 100 μmol·L-1) on proliferation of 786-O cells. The effect of ISL on migration and invasion of 786-O cells was detected by cell scratch test and Transwell assay. The autophagy was observed under the fluorescence microscope through acridine orange staining and Ad-GFP-LC3 transfection experiment. Western blot was used to detect the expression of autophagy related protein and analyze the changes of phosphatidylinositol-3-kinase (PI3K)/protein kinase B(Akt)/mammalian target of rapamycin (mTOR) signaling pathway to explore the possible mechanism. Result: MTT results showed that ISL could significantly inhibit the proliferation of 786-O cells in a time-dose dependent manner (PPPPPPPPConclusion: ISL can inhibit the proliferation, migration and invasion of clear cell renal carcinoma 786-O cells, and induce autophagy by inhibiting the PI3K/Akt/mTOR signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL