Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Biomedical Engineering ; (6): 885-892, 2019.
Article in Chinese | WPRIM | ID: wpr-774128

ABSTRACT

Mouse animal models are the most commonly used experimental tools in scientific research, which have been widely favored by researchers. The animal model of mouse leukemia appeared in the 1930s. During the past 90 years, researchers have developed various types of mouse leukemia models to simulate the development and treatment of human leukemia in order to promote effectively the elucidation of the molecular mechanism of leukemia' development and progression, as well as the development of targeted drugs for the treatment of leukemia. Considering that to myeloid leukemia, especially acute myeloid leukemia, there currently is no good clinical treatment, it is urgent to clarify its new molecular mechanism and develop new therapeutic targets. This review focuses on the various types of mouse models about myeloid leukemia used commonly in recent years, including mouse strains, myeloid leukemia cell types, and modeling methods, which are expected to provide a reference for relevant researchers to select animal models during myeloid leukemia research.


Subject(s)
Animals , Humans , Mice , Disease Models, Animal , Leukemia, Myeloid, Acute
2.
An. acad. bras. ciênc ; 89(1,supl): 635-647, May. 2017. tab, graf
Article in English | LILACS | ID: biblio-886672

ABSTRACT

ABSTRACT The development of DBA/2J mouse strain embryos is nearly 12 h - or 6 somite pairs - delayed as compared to the outbred NMRI mouse embryos of the same age on gestation days (GD) 8-12. To evaluate inter-strain differences in susceptibility to teratogens, dams were treated with methylnitrosourea (MNU, 5 mg/kg body weight i.p.) on defined gestation days (NMRI: GD 9, 91/2 or 10; DBA/2J: GD 10 or 101/2). Skeletal anomalies produced by MNU on both mouse strains varied with the GD of treatment. The pattern of anomalies produced by MNU on a given GD markedly differed between the two mouse strains, yet they were similar -with a few exceptions- when exposures at equivalent embryonic stages are compared. Findings from this study indicated that strain-dependent differences in the developmental stage of mouse embryos of the same gestational age occur, a possibility that has been often neglected when inter-strain differences in susceptibility to developmental toxicants are interpreted.


Subject(s)
Animals , Female , Pregnancy , Rats , Skeleton/abnormalities , Teratogens/toxicity , Somites/abnormalities , Embryonic Development/drug effects , Embryo, Mammalian/abnormalities , Methylnitrosourea/toxicity , Skeleton/drug effects , Skeleton/embryology , Somites/drug effects , Somites/embryology , Embryo, Mammalian/drug effects , Mice, Inbred DBA
3.
The Korean Journal of Physiology and Pharmacology ; : 89-97, 2013.
Article in English | WPRIM | ID: wpr-727484

ABSTRACT

Developing an animal model for a specific disease is very important in the understanding of the underlying mechanism of the disease and allows testing of newly developed new drugs before human application. However, which of the plethora of experimental animal species to use in model development can be perplexing. Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a very well known method to induce the symptoms of Parkinson's disease in mice. But, there is very limited information about the different sensitivities to MPTP among mouse strains. Here, we tested three different mouse strains (C57BL/6, Balb-C, and ICR) as a Parkinsonian model by repeated MPTP injections. In addition to behavioral analysis, endogenous levels of dopamine and tetrahydrobiopterin in mice brain regions, such as striatum, substantia nigra, and hippocampus were directly quantified by liquid chromatography-tandem mass spectrometry. Repeated administrations of MPTP significantly affected the moving distances and rearing frequencies in all three mouse strains. The endogenous dopamine concentrations and expression levels of tyrosine hydroxylase were significantly decreased after the repeated injections, but tetrahydrobiopterin did not change in analyzed brain regions. However, susceptibilities of the mice to MPTP were differed based on the degree of behavioral change, dopamine concentration in brain regions, and expression levels of tyrosine hydroxylase, with C57BL/6 and Balb-C mice being more sensitive to the dopaminergic neuronal toxicity of MPTP than ICR mice.


Subject(s)
Animals , Humans , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Biopterins , Brain , Dopamine , Dopaminergic Neurons , Hippocampus , Mass Spectrometry , Mice, Inbred ICR , Models, Animal , Parkinson Disease , Substantia Nigra , Tyrosine 3-Monooxygenase
4.
Indian J Physiol Pharmacol ; 2010 Oct-Dec; 54(4): 309-317
Article in English | IMSEAR | ID: sea-145989

ABSTRACT

We sought to determine whether VEGF and other angiogenic growth factors and their receptors might be subject to negative feedback regulation during two weeks of treadmill-exercise conditioning in inbred strains of mice. C57BL/6 mice exhibited greater VEGF mRNA and protein responses in gastrocnemius muscle to a single bout of treadmill exercise compared to BALB/c mice. The patterns of VEGF, VEGFR1, VEGFR2, Ang2 and Tie2 mRNA expression in gastrocnemius muscles of C57BL/6 mice during long-term exercise support the hypothesis that they may be subject to negative feedback regulation. The combination of expression patterns for growth factors and their receptors suggests that multiple layers of control mechanisms may exist to prevent angiogenesis following a single bout of exercise and to promote angiogenesis following long-term exercise.

SELECTION OF CITATIONS
SEARCH DETAIL