Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
China Pharmacy ; (12): 955-960, 2024.
Article in Chinese | WPRIM | ID: wpr-1016718

ABSTRACT

OBJECTIVE To explore the effects of alfentanil (ALF) on myocardial fibrosis in rats with acute myocardial infarction (AMI) by regulating sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate (S1P) signaling pathway. METHODS Male SD rats were collected to construct AMI model by the ligation of anterior descending branch of left coronary artery. The successfully modeled rats were randomly divided into AMI model group (Model group), ALF low-dose group (ALF-L group, 0.25 mg/kg ALF), ALF high-dose group (ALF-H group, 0.5 mg/kg ALF), high dose of ALF+SphK1 activator group (ALF-H+K6PC-5 group, 0.5 mg/kg ALF+1 μg/g K6PC-5). At the same time, a sham operation group (Sham group) was set up to perform only chest opening/closing operations without ligating the anterior descending branch of left coronary artery, with 15 rats in each group. Rats in each drug group were intraperitoneally injected with the corresponding drug solution, once a day, for 4 consecutive weeks. Twelve hours after the last medication, cardiac function indicators [left ventricular systolic pressure (LVSP), left ventricular ejection fraction (LVEF), left ventricular systolic diameter (LVSD), left ventricular fractional shortening (LVFS)] of rats were detected in each group; the condition of myocardial infarction, pathological changes in myocardial tissue, and degree of fibrosis were observed; serum levels of brain natriuretic peptide (BNP) and cardiac troponin Ⅰ (cTnⅠ) in rats were detected. The protein expressions of collagen Ⅰ , collagen Ⅲ , matrix metalloproteinase-2 (MMP-2), SphK1 and S1P were alsodetected in the myocardial tissue of rats. RESULTS Compared with the Sham group, the arrangement of myocardial cells in the Model group was disordered, with a large number of inflammatory cells infiltrating. The levels of LVSP, LVFS and LVEF in the Model group were significantly reduced (P<0.05); LVSD level, myocardial infarction area, collagen volume fraction, serum levels of BNP and cTnⅠ, the protein expressions of collagen Ⅰ, collagen Ⅲ, MMP-2, SphK1 and S1P in myocardial tissue were significantly increased or enlarged (P<0.05). Compared with the Model group, the pathological changes and degree of fibrosis in the myocardial tissue of rats in each dose group of ALF were improved or relieved, while the quantitative indicators of rats in the ALF-H group were significantly improved and significantly better than those in ALF-L group (P<0.05). K6PC-5 could significantly reverse the improvement effect of high-dose ALF on the above quantitative indicators in rats (P<0.05). CONCLUSIONS ALF can reduce myocardial fibrosis and improve cardiac function in AMI rats, and the effect may be related to the inhibition of the SphK1/S1P signaling pathway.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 272-282, 2024.
Article in Chinese | WPRIM | ID: wpr-1013365

ABSTRACT

Myocardial fibrosis (MF) is a common pathological manifestation of various heart diseases. Due to the non-renewable nature of myocardial cells, the occurrence of MF represents irreversible damage to the myocardium. Previous studies have suggested that fibroblast-mediated collagen deposition is the main mechanism of MF. Recent studies have found that there is an immune regulation mechanism in the heart itself, and macrophage activation/polarization plays an important role in MF. With the deepening of traditional Chinese medicine research, scholars have found that traditional Chinese medicine can interfere with MF by regulating the renin-angiotensin-aldosterone system (RAAS) system and the inflammatory process, repairing the extracellular matrix, managing oxidative stress, and maintaining the balance of autophagy. This process is closely related to the activation and M1/M2 polarization of macrophages. Throughout the MF process, macrophage activation is beneficial, but excessive activation will be harmful. In the early stage of MF, appropriate M1 macrophage polarization is conducive to activating immunity and removing harmful substances. In the middle and late stages of MF, appropriate M2 macrophage polarization is conducive to remodeling the damaged myocardium. If macrophage activation is excessive/insufficient, or the balance of M1/M2 macrophage polarization is broken, the effect changes from improvement to destruction. Traditional Chinese medicines that regulate the activation/polarization of macrophages have the effects of replenishing Qi and nourishing Yin, as well as regulating Qi and activating blood, but there are also some heat-clearing, dampness-drying, and detoxification products. Therefore, the occurrence of MF may be caused by Qi and Yin deficiency, damp heat accumulation, and Qi stagnation and blood stasis. By summarizing the biological processes involved in macrophage activation/polarization in MF, this paper expounded on the research progress of traditional Chinese medicine in regulating macrophage activation and M1/M2 polarization from different angles to improve MF, so as to provide a reference for the treatment of MF with traditional Chinese medicine.

3.
China Pharmacy ; (12): 529-535, 2024.
Article in Chinese | WPRIM | ID: wpr-1012568

ABSTRACT

OBJECTIVE To study the improvement effects of arbutin on myocardial fibrosis (MF) model rats and its mechanism. METHODS The network pharmacology was used to predict the potential target of arbutin in improving MF and molecular docking was used to validated. Totally 50 SD rats were given isoprenaline subcutaneously (5 mg/kg, once a day, for 14 consecutive days) to induce the MF model. Modeled rats were randomly divided into model group, captopril group (9 mg/kg), arbutin low-dose, medium-dose and high-dose groups (50, 100, 200 mg/kg), with 10 rats in each group. Another 10 healthy rats were included as normal group. Each group was given the corresponding drugs, once a day, for 28 consecutive days. Twenty-four hours after the final administration, electrocardiograms and heart-related indexes [heart weight index (HWI), left ventricular weight index (LVWI)] of rats were detected; the levels of creatine kinase (CK), lactate dehydrogenase (LDH), N-terminal pro-brain natriuretic peptide (NT-proBNP) and type Ⅰ collagen (Col Ⅰ) and Col Ⅲ were detected in myocardial tissue of rats; the pathological changes of myocardial tissue were observed, and protein and mRNA expressions of adenosine deaminase (ADA) and adenosine kinase (ADK) were detected in the myocardial tissue of rats. RESULTS The results of network pharmacology showed that the main targets of arbutin improving MF were ADA and ADK. The results of molecular docking showed that arbutin bind stably with ADA and ADK. The results of experimental verification showed that compared with model group, the amplitude of ST and T waves in electrocardiogram were improved in administration groups, and the symptoms of atrial flutter were alleviated; HWI (except for arbutin medium-dose group), LVWI, the levels of CK, LDH, NT-proBNP, Col Ⅰ and Col Ⅲ in the myocardial tissue of rats were decreased significantly (P<0.05); the degree of myocardial fibrosis in rats decreased; protein and mRNA expressions of ADA and ADK in the myocardial tissue were significantly increased (P<0.05). CONCLUSIONS Arbutin can improve cardiac fibrosis and cardiac function of MF model rats, the mechanism of which may be associated with up-regulating protein and mRNA expressions of ADA and ADK,influencing the nucleotide metabolism and collagen generation. zhangminghao@hactcm.edu.cn

4.
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery ; (12): 1316-1322, 2023.
Article in Chinese | WPRIM | ID: wpr-996971

ABSTRACT

@#Objective     To search for the key microRNAs (miRNAs) involved in myocardial fibrosis in hypertrophic cardiomyopathy, and to further explore the mechanisms involved in the regulation of myocardial fibrosis. Methods    Forty-two patients with hypertrophic cardiomyopathy diagnosed and treated surgically in West China Hospital of Sichuan University from January 2014 to June 2018 were selected, including 29 males and 13 females, with a median age of 46 (15-69) years. In the myocardial tissue of patients with hypertrophic cardiomyopathy with different degrees of fibrosis, miRNAs with significantly different expression were screened and further verified at the cellular level. By regulating the expression of the target miRNAs, the expressions of fibrosis-related proteins and target genes were detected respectively. Finally, the target-binding relationship was verified by dual-luciferase reporter gene detection. Results    miR-484 was up-regulated in severely fibrotic myocardial tissue and activated cardiac fibroblasts. After cardiac fibroblasts were activated by TGF-β1, the expression of miR-484 was significantly up-regulated, the expression of fibrosis-related proteins (CollagenⅠ, α-SMA) increased, and the expression of the target gene HIPK1 decreased (P<0.05). After inhibiting the expression of miR-484 by transfection of miR-484 antagomir, the expression of fibrosis-related proteins decreased, while expression of HIPK1 was up-regulated (P<0.05). The detection of dual luciferase reporter gene showed that the luciferase activity of the transfected WT-miRNA-484 mimics group was lower than that of the control group (P<0.05). Conclusion    miR-484 is a pro-fibrotic miRNA that participates in the process of myocardial fibrosis by negatively regulating the expression of HIPK1. It can be used as a regulatory target to provide a therapeutic strategy for myocardial fibrosis.

5.
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery ; (12): 1008-1013, 2023.
Article in Chinese | WPRIM | ID: wpr-996841

ABSTRACT

@#Objective    To investigate the predictive value of right atrial myocardial fibrosis in the prognosis of isolated tricuspid regurgitation surgery after left heart valve surgery. Methods    The patients who underwent tricuspid valvuloplasty by the same operator in Guangdong Provincial People's Hospital from April 2016 to August 2021 due to long-term isolated severe tricuspid regurgitation after left heart valve surgery were included in the study. According to the degree of right atrial myocardial fibrosis, the patients were divided into three groups: a mild group, a moderate group, and a severe group. The clinical data of these patients were compared and analyzed. Results    A total of 75 patients were enrolled, including 16 males and 59 females with an average age of 57.0±8.4 years. There were 30 patients in the mild group, 29 patients in the moderate group and 16 patients in the severe group. In terms of the preoperative data, there were statistical differences in cardiac function grade, right atrial diameter, tricuspid incompetence area among the three groups (P<0.05). In terms of the postoperative data, there were statistical differences among the three groups in the cardiopulmonary bypass time, mechanical ventilation time, ICU monitoring time, complication rate and mortality (P<0.05). Further pairwise comparison showed that, compared with the mild group, the severe group had longer mechanical ventilation time (P=0.024), longer ICU monitoring time (P=0.003) and higher incidence of postoperative complications (P=0.024), while the moderate group had no statistical difference in all aspects (P>0.05); compared with the moderate group, the severe group had longer ICU monitoring time (P=0.021) and higher incidence of complications (P=0.006). Conclusion    The early outcome of tricuspid valvuloplasty in patients with isolated tricuspid regurgitation after left heart valve surgery with severe right atrial myocardial fibrosis is worse than that in the patients with mild and moderate fibrosis, suggesting that the degree of myocardial fibrosis in the right atrium can be a predictor of the effect of tricuspid regurgitation surgery and a judgement indicator of the surgery timing.

6.
Chinese Journal of Radiology ; (12): 522-527, 2023.
Article in Chinese | WPRIM | ID: wpr-992982

ABSTRACT

Objective:To explore the effect of joint segmentation model of myocardial-fibrotic region based on deep learning in quantitative analysis of myocardial fibrosis in patients with dilated cardiomyopathy(DCM).Methods:The data of 200 patients with confirmed DCM and myocardial fibrosis in the left ventricle detected by cardiac MR-late gadolinium enhancement (CMR-LGE) in Xuzhou Central Hospital from January 2015 to April 2022 were retrospectively analyzed. Using a complete randomized design, the patients were divided into training set ( n=120), validation set ( n=30) and test set ( n=50). The left ventricle myocardium was outlined and the normal myocardial region was selected by radiologists. Fibrotic myocardium was extracted through calculating the threshold with standard deviation (SD) as a reference standard for left ventricle segmentation and fibrosis quantification. The left ventricular myocardium was segmented by convex prior U-Net network. Then the normal myocardial image block was recognized by VGG image classification network, and the fibrosis myocardium was extracted by SD threshold. The myocardial segmentation effect was evaluated using precision, recall, intersection over union (IOU) and Dice coefficient. The consistency of myocardial fibrosis ratio in left ventricle obtained by joint segmentation model and manual extraction was evaluated with intra-class correlation coefficient (ICC). According to the median of fibrosis rate, the samples were divided into mild and severe fibrosis, and the quantitative effect of fibrosis was compared by Mann-Whitney U test. Results:In the test set, the precision of myocardial segmentation was 0.827 (0.799, 0.854), the recall was 0.849 (0.822, 0.876), the IOU was 0.788 (0.760, 0.816), and the Dice coefficient was 0.832 (0.807, 0.857). The consistency of fibrosis ratio between joint segmentation model and manual extraction was high (ICC=0.991, P<0.001). No statistically significant difference was found in the ratio error between mild and severe fibrosis ( P>0.05). Conclusions:The joint segmentation model realizes the automatic calculation of myocardial fibrosis ratio in left ventricle, which is highly consistent with the results of manual extraction. Therefore, it can accurately realize the automatic quantitative analysis of myocardial fibrosis in patients with dilated cardiomyopathy.

7.
Chinese Critical Care Medicine ; (12): 93-98, 2023.
Article in Chinese | WPRIM | ID: wpr-991985

ABSTRACT

Objective:To explore the role of tropomyosin 3 (TPM3) in hypoxia/reoxygenation (H/R)-induced cardiomyocyte pyroptosis and fibroblast activation.Methods:Rat cardiomyocytes (H9c2 cells) were treated with H/R method to simulate myocardial ischemia/reperfusion (I/R) injury, and cell proliferation activity was evaluated with cell counting kit-8 (CCK8). The expression of TPM3 mRNA and protein was detected by quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting. H9c2 cells with stable TPM3-short hairpin RNA (shRNA) expression were constructed and treated with H/R (hypoxia for 3 hours, and reoxygenation for 4 hours). The expression of TPM3 was measured by RT-qPCR. The expressions of TPM3, pyroptosis-related proteins including caspase-1, NOD-like receptor protein 3 (NLRP3) and Gasdermin family proteins-N (GSDMD-N) were measured by Western blotting. The expression of caspase-1 was also observed by immunofluorescence assay. The levels of human interleukins (IL-1β, IL-18) in the supernatant were determined by enzyme-linked immunosorbent assay (ELISA) to elucidate the effect of sh-TPM3 on pyroptosis of cardiomyocytes. Rat myocardial fibroblasts were incubated with the above cell supernatant, and the expressions of human collagen Ⅰ, collagen Ⅲ, matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase inhibitor 2 (TIMP2) were detected by Western blotting to determine the effect of TPM3-interfered cardiomyocytes on the activation of fibroblasts under H/R conditions.Results:Compared with the control group, H/R treatment for 4 hours significantly decreased the survival rate of H9c2 cells [(25.81±1.90)% vs. (99.40±5.54)%, P < 0.01], promoted the expression of TPM3 mRNA and protein [TPM3/GAPDH (2 -ΔΔCt): 3.87±0.50 vs. 1, TPM3/β-Tubulin: 0.45±0.05 vs. 0.14±0.01, both P < 0.01], and promoted the expressions of caspase-1, NLRP3, GSDMD-N, and the enhanced release of cytokines IL-1β and IL-18 [cleaved caspase-1/caspase-1: 0.89±0.04 vs. 0.42±0.03, NLRP3/β-Tubulin: 0.39±0.03 vs. 0.13±0.02, GSDMD-N/β-Tubulin: 0.69±0.05 vs. 0.21±0.02, IL-1β (μg/L): 13.84±1.89 vs. 4.31±0.33, IL-18 (μg/L): 17.56±1.94 vs. 5.36±0.63, all P < 0.01]. However, compared with the H/R group, sh-TPM3 significantly weakened the promoting effects of H/R on these proteins and cytokines [cleaved caspase-1/caspase-1: 0.57±0.05 vs. 0.89±0.04, NLRP3/β-Tubulin: 0.25±0.04 vs. 0.39±0.03, GSDMD-N/β-Tubulin: 0.27±0.03 vs. 0.69±0.05, IL-1β (μg/L): 8.56±1.22 vs. 13.84±1.89, IL-18 (μg/L): 9.34±1.04 vs. 17.56±1.94, all P < 0.01]. In addition, the expressions of collagen Ⅰ, collagen Ⅲ, TIMP2, and MMP-2 in myocardial fibroblasts were significantly increased by the cultured supernatants from the H/R group (collagen Ⅰ/β-Tubulin: 0.62±0.05 vs. 0.09±0.01, collagen Ⅲ/β-tubulin: 0.44±0.03 vs. 0.08±0.00, TIMP2/β-tubulin: 0.73±0.04 vs. 0.20±0.03, TIMP2/β-Tubulin: 0.74±0.04 vs. 0.17±0.01, all P < 0.01). However, these boosting effects were weakened by sh-TPM3 (collagen Ⅰ/β-Tubulin: 0.18±0.01 vs. 0.62±0.05, collagen Ⅲ/β-Tubulin: 0.21±0.03 vs. 0.44±0.03, TIMP2/β-Tubulin: 0.37±0.03 vs. 0.73±0.04, TIMP2/β-Tubulin: 0.45±0.03 vs. 0.74±0.04, all P < 0.01). Conclusion:Interference with TPM3 can alleviate H/R-induced cardiomyocyte pyroptosis and fibroblast activation, suggesting that TPM3 may be a potential target of myocardial I/R injury.

8.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 801-808, 2023.
Article in Chinese | WPRIM | ID: wpr-988726

ABSTRACT

ObjectiveTo investigate the effects of hydroxycamptothecin liposomes (LHCPT) on myocardial fibrosis in rats with heart failure by regulating the sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P) signaling pathway. MethodsSD rats were divided into control group, model group, hydroxycamptothecin (HCPT) group, LHCPT group, captopril group, and LHCPT+K6PC-5 (SphK1 activator) group, with 12 rats in each group. The heart failure rat models in all groups except the control group were established by intraperitoneal injection of doxorubicin and then the corresponding drugs were given once a day. After four weeks, we applied color Doppler ultrasound to detect left ventricular end systolic diameter (LVESD), left ventricular end diastolic diameter (LVEDD), and left ventricular ejection fraction (LVEF) in rats; HE and Masson staining for myocardial pathological damage and myocardial fibrosis in rats, respectively; ELISA method for the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in rat myocardial tissues; qRT-PCR for the expression of transforming growth factor-β1 (TGF-β1), type I collagen (Collagen I), and type Ⅲ collagen (Collagen Ⅲ) in rat myocardial tissues; Western blot for the expression of SphK1 and S1P proteins in rat myocardial tissues. ResultsCompared with the control group, the model group showed severe myocardial pathological damage and myocardial fibrosis, increased LVESD, LVEDD, levels of TNF-α and IL-6, expression of TGF-β1, Collagen I, Collagen Ⅲ, SphK1, S1P and decreased LVEF (P<0.05). Compared with the model group, the HCPT group, LHCPT group and captopril group showed alleviated myocardial pathological damage and myocardial fibrosis, decreased LVESD, LVEDD, levels of TNF-α and IL-6, expression of TGF-β1, Collagen I, Collagen Ⅲ, SphK1, S1P and increased LVEF (P<0.05). Compared with the LHCPT group, the LHCPT+K6PC-5 group showed aggravated myocardial pathological damage and myocardial fibrosis, increased LVESD, LVEDD, levels of TNF-α and IL-6, expression of TGF-β1, Collagen I, Collagen Ⅲ, SphK1, S1P and decreased LVEF (P<0.05). ConclusionLHCPT may inhibit myocardial fibrosis in heart failure rats by inhibiting the SphK1/S1P signaling pathway.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 20-29, 2023.
Article in Chinese | WPRIM | ID: wpr-988176

ABSTRACT

ObjectiveTo explore the material basis and molecular mechanism of Linggui Qihua prescription (LGQH) against myocardial fibrosis in heart failure with preserved ejection fraction (HFpEF). MethodLiquid chromatography-mass spectrometry (LC-MS) was used to qualitatively analyze the active components of LGQH. AutoDock software was employed for molecular docking between the active components of LGQH and target proteins including α-smooth muscle actin (α-SMA), type Ⅰ collagen (ColⅠ), type Ⅲ collagen (ColⅢ), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1). In vivo experiments were conducted on 40 spontaneously hypertensive rats (SHRs) aged 4 weeks, which were divided into an HFpEF group, an Entresto group (0.018 g·kg-1), and low- and high-dose LGQH groups (3.87, 7.74 g·kg-1). A high-fat, high-salt, and high-sugar diet was administered for 16 weeks along with intraperitoneal injection of streptozotocin solution for 8 weeks to establish an HFpEF model in rats. The blank group consisted of 10 Wistar Kyoto (WKY) rats and 10 SHRs. After successful modeling, the WKY, SHR, and HFpEF groups were given equal volumes of normal saline, while the other three groups received predetermined interventions. Daily oral gavage was performed for 6 weeks. After intervention, echocardiography was conducted to measure left ventricular (LV) anterior wall thickness (LVAWd), LV posterior wall thickness (LVPWd), LV internal diameter at end-diastole (LVIDd), LV ejection fraction (LVEF), isovolumic relaxation time (IVRT), early diastolic peak velocity of mitral valve inflow (E), and early diastolic mitral annular velocity (e'). The E/e' ratio was calculated. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and galectin-3 (Gal-3). Myocardial fibrosis was observed through Masson staining of pathological sections, and collagen volume fraction (CVF) and perivascular fibrosis ratio (PFR) were calculated. Real-time polymerase chain reaction (PCR) and Western blot were employed to detect LV myocardial mRNA and protein expression of α-SMA, ColⅠ, ColⅢ, MMP-9, and TIMP-1. ResultLC-MS identified 13 active components in LGQH. Molecular docking indicated stable binding of the 13 compounds with five target proteins. In vivo experiments showed that compared with the blank group, the HFpEF group had significantly increased LVAWd, LVPWd, LVIDd, IVRT, E/e', ANP, BNP, Gal-3, CVF, and PFR. LV myocardial α-SMA, ColⅠ, and ColⅢ mRNA and protein expression was significantly upregulated, while MMP-9/TIMP-1 mRNA and protein ratios were significantly downregulated (P<0.05, P<0.01). Compared with the HFpEF group, LGQH might dose-dependently reduce LVAWd, LVPWd, LVIDd, IVRT, E/e', ANP, BNP, Gal-3, CVF, and PFR, downregulated myocardial α-SMA, ColⅠ, ColⅢ mRNA expression, α-SMA, and ColⅠ protein expression, and upregulated MMP-9/TIMP-1 mRNA and protein expression (P<0.05, P<0.01). ConclusionLGQH contains multiple active components and may inhibit myocardial fibrosis in HFpEF rats. It may further alleviate LV hypertrophy, dilation, and diastolic dysfunction, making it an effective Chinese medicinal prescription for treating HFpEF.

10.
Chinese Acupuncture & Moxibustion ; (12): 1151-1156, 2023.
Article in Chinese | WPRIM | ID: wpr-1007458

ABSTRACT

OBJECTIVE@#To observe the effect of electroacupuncture (EA) at "Neiguan" (PC 6) on myocardial fibrosis in spontaneously hypertensive rats (SHR), and explore preliminarily the mediating role of cholinergic anti-inflammatory pathway (CAP) and its downstream nuclear factor κB (NF-κB) signaling pathway.@*METHODS@#Six 12-week-old WKY male rats were employed as the normal group. Eighteen 12-week-old SHR were randomly divided into 3 groups, i.e. a model group, an EA group and a blocking group (EA after blocking α7 nicotinic acetylcholine receptor [α7nAchR]), with 6 rats in each one. In the EA group, EA was delivered at "Neiguan"(PC 6) and the site 0.5 cm from its left side, with disperse-dense wave, 2 Hz/15 Hz in frequency and 1 mA in current intensity. One intervention took 30 min and was given once every 2 days, lasting 8 weeks. In the blocking group, prior to each EA, the α7nAchR specific blocker, α-bungartoxin was injected intravenously in the tails of the rats. After EA intervention, the systolic blood pressure (SBP), the diastolic blood pressure (DBP) and the mean arterial pressure (MAP) were measured with non-invasive blood pressure monitor. Using echocardiogram, the left ventricular (LV) anterior wall end-diastolic thickness (LVAWd) , LV posterior wall end-diastolic thickness (LVPWd) and the LV end-diastolic internal diameter (LVIDd) were measured. The level of hydroxyproline (Hyp) in the myocardial tissue was determined by using alkaline hydrolysis, and that of acetylcholine (Ach) was detected by ELISA. With the real-time PCR adopted, the mRNA expression of NF-κB p65, tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 were determined.@*RESULTS@#Compared with the normal group, SBP, DBP, MAP, LVAWd and LVPWd were increased (P<0.01), and LVIDd was decreased (P<0.01) in the rats of the model group. SBP, DBP, MAP and LVAWd were dropped (P<0.01, P<0.05), and LVIDd rose (P<0.01) in the EA group when compared with those in the model group. The differences in the above indexes were not statistically significant between the blocking group and the model group (P>0.05). Compared with the normal group, Hyp level and the mRNA expression of NF-κB p65, TNF-α, IL-1β and IL-6 in the myocardial tissue increased (P<0.01, P<0.05) and Ach level decreased (P<0.01) in the model group. Hyp level, the mRNA expression of NF-κB p65, TNF-α, IL-1β and IL-6 in the myocardial tissue were reduced (P<0.05, P<0.01) and Ach level rose (P<0.01) in the EA group when compared with those in the model group. These indexes were not different statistically between the blocking group and the model group (P>0.05).@*CONCLUSION@#CAP may be involved in ameliorating the pathological damage of myocardial fibrosis during EA at "Neiguan"(PC 6). The underlying effect mechanism is associated with up-regulating the neurotransmitter, Ach and down-regulating mRNA expression of NF-κB p65 and pro-inflammatory factors such as TNF-α, IL-1β and IL-6 in myocardial tissue.


Subject(s)
Rats , Male , Animals , Rats, Inbred SHR , NF-kappa B/metabolism , Rats, Inbred WKY , Electroacupuncture , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Neuroimmunomodulation , alpha7 Nicotinic Acetylcholine Receptor , Acetylcholine , Fibrosis , RNA, Messenger
11.
JOURNAL OF RARE DISEASES ; (4): 43-49, 2023.
Article in English | WPRIM | ID: wpr-1005059

ABSTRACT

  Objective  Myocardial fibrosis is a potential mechanism of light-chain myocardial amyloidosis(AL-CA). This research aimed at exploring the correlation between multiparameter cardiac magnetic resonance (CMR) and myocardial fibrosis by relating the CMR myocardial tissue characteristics, the morphological and the functional parameters with gallium-68-labeledfibroblast activation protein inhibitor 04 positron emission tomography (68Ga-FAPI PET).  Methods  We gave the patients diagnosed with AL-CA in Peking Union Medical College Hospital from August to December 2021 the examinations of CMR and 68Ga-FAPI PET/CT. We recorded and analyzed the information on clinical manifestations and examinations of the patients.  Results  A total of 23 patients with AL-CA were included, 15 (65.2%)of which were male and the mean age was 58.3±6.5 years. Patients with high 68Ga-FAPI-04 uptake had shown growth in myocardial extracellular volume (ECV), significantly higher than those in the negative group (P=0.047). In addition, patients' myocardial ECV was positively correlated with myocardial FAPI uptake (r=0.628, P=0.001;r=0.727, P < 0.001;r=0.661, P=0.001). Patients in the positive group showd reduced left ventricular (LV) ejection fraction (EF)(P < 0.001).LVEF (r=-0.798, P < 0.001;r=-0.794, P < 0.001; r=-0.795, P < 0.001) and right ventricular (RV)EF (r=-0.735, P < 0.001;r=-0.739, P < 0.001;r=- 0.684, P < 0.001) showd negatively correlated with myocardial FAPI uptake, LV circumferential strain (r=0.668, P < 0.001;r=0.708, P < 0.001;r=0.705, P < 0.001), LV longitudinal strain (r=0.629, P=0.001;r=0.635, P=0.001; r=0.597, P=0.003), and RV longitudinal strain (r=0.575, P=0.004; r=0.792, P < 0.001;r=0.673, P < 0.001) were negatively correlated with myocardial FAPI uptake.  Conclusions  FAPI-related fibroblast activation is concurrent with CMR-related abnormal myocardial interstitial characteristics that leads to the decreased function of the myocardial movement. Patients with increased FAPI uptake present with increased ECV, decreased EF, and decreased strain with morphological abnormalities.

12.
Chinese Pharmacological Bulletin ; (12): 605-609, 2023.
Article in Chinese | WPRIM | ID: wpr-1013920

ABSTRACT

Myocardial fibrosis is a common pathological feature in various advanced cardiovascular diseases, and progressive fibrosis is the pathological basis for the development and progression of many cardiac arrhythmias and heart failure. There are no effective reversal drugs for myocardial fibrosis, which is related to the lack of understanding of the molecular mechanisms. Noncoding RNAs are a class of RNAs that do not function as coding proteins, and have been found to be intimately involved in the life cycle of cardiomyocyte differentiation, transcription and apoptosis, and are important regulators of cardiovascular diseases. An increasing number of studies have shown that noncoding RNAs regulate the proliferation and transformation of cardiac fibroblasts through related signaling pathways and can be used as potential biomarkers and novel therapeutic targets for cardiac fibrosis. This article reviews the relationship between noncoding RNAs and cardiac fibrosis.

13.
Chinese Pharmacological Bulletin ; (12): 1014-1019, 2023.
Article in Chinese | WPRIM | ID: wpr-1013775

ABSTRACT

Fibrosis is a repair response initiated by tissues and organs after injury, and is a self-protection mechanism of the body. It has been found that endothelium-to-interstitial transdifferentiation (EndMT) is involved in the physiological and pathological processes of various organ fibrosis, which has become a focus of the research on fibrotic diseases. In recent years, the study has found that EndMT plays an important role in many pathological processes in cardiovascular system, lungs, kidneys, liver, pancreas fibrosis, and so on. This article summarizes EndMT regulatory mechanism and its role in each organ fibrosis, as well as the related treatment progress of EndMT targets, so as to provide new targets for prevention and control of organ fibrosis.

14.
Chinese Pharmacological Bulletin ; (12): 2274-2280, 2023.
Article in Chinese | WPRIM | ID: wpr-1013672

ABSTRACT

Aim To explore the effect of androgen receptor AR on the proliferation and lipid synthesis of cardiac fibroblasts under high-glucose conditions and the possible molecular mechanism.Methods The hearts of neonatal rats were dissected for primary culture of cardiac fibroblasts. Then the growth status of CFs was observed under the inverted microscope, and the identification of CFs was performed by immunofluorescence staining using anti-vimentin. After cell adherence, the cells were divided into blank control group, high glucose model group, negative control group, and overexpressed AR group. The glucose concentration was 33.0 mmol·L-1 except that the blank control group was 5.5 mmol·L-1. After 24 hours of CFs culture, Western blot and RT-qPCR were used to detect the expression of AR, FASN, PCNA, cyclin D1, α-SMA, and collagen . Oil red O and CCK-8 were used to detect the changes in lipid synthesis and cell proliferation ability, respectively.Results Compared with the blank control group, the lipid synthesis and proliferation of CFs in the high glucose model group were enhanced. Western blot and RT-qPCR results showed that the expression of AR decreased, while the expression of fat lipid synthase(FASN), proliferation marker PCNA, cyclin D1 and fibrosis marker α-SMA and collagen increased. After AR overexpressed plasmid was transfected into the CFs treated by high glucose, AR overexpression markedly decreased the expression of FASN, PCNA, cyclin D1, α-SMA and collagen compared with the empty plasmid‐transfected group. Meanwhile, oil red O staining and CCK-8 results showed that the lipid synthesis and proliferation ability of the overexpressed AR group decreased compared with the empty vector group, respectively. Conclusions High glucose promotes the proliferation and lipid synthesis of cardiac fibroblasts. Besides, the mechanism may be related to the regulation of lipid synthesis regulated by AR.

15.
China Pharmacy ; (12): 1053-1059, 2023.
Article in Chinese | WPRIM | ID: wpr-972946

ABSTRACT

OBJECTIVE To investigate the effects of salidroside (Sal) on myocardial fibrosis and pyroptosis and its potential mechanism. METHODS The mice were randomly divided into control group, model group and Sal low-dose, medium-dose and high-dose groups, with 10 mice in each group. Except for the control group, the mice in other groups were injected subcutaneously with isoproterenol 5 mg/(kg·d)to prepare the myocardial fibrosis model. Since modeling, mice in the Sal low-dose, medium-dose and high-dose groups were given 10, 30 and 50 mg/kg of Sal by intragastric administration every day; control group and model group were given 10 mL/kg of normal saline by intragastric administration every day, for 14 consecutive days. After the last medication, the mice were sacrificed; hematoxylin-eosin staining was used to observe pathological change of myocardial tissue and calculate the diameter of myocardial cell; Masson and Sirius Red staining were used to observe the degree of myocardial fibrosis in mice and calculate the collagen volume fraction (CVF); quantitative real-time PCR was performed to detect the mRNA expressions of collagen type Ⅰ (Col Ⅰ), α-smooth muscle actin (α-SMA), Toll-like receptor 4 (TLR4), NOD-like receptor pyrin domain containing 3 (NLRP3), caspase-1 andgasdermin D (GSDMD) in myocardial tissues. The total protein expressions of Col Ⅰ, α-SMA, TLR4, NLRP3,caspase-1 and GSDMD in myocardial tissues and protein-positive cell score were measured by Western blot assay and immunohistochemistry. RESULTS Compared with control group, the myocardial cells in the model group were enlarged, the arrangement of myocardial fibers was disordered, the matrix metabolism was significantly increased, the CVF in myocardial tissue was significantly increased, and the mRNA and protein expression levels of Col Ⅰ, α-SMA, TLR4, NLRP3, caspase-1 and GSDMD were elevated and protein-positive cell score was increased significantly (P<0.01). Compared with model group, the myocardial cell morphology was clearer, myocardial fibrosis was alleviated, and the levels of the above indicators in myocardial tissue of Sal medium-dose and high-dose groups had been reversed to varying degrees, especially in Sal high-dose group(P<0.05 or P<0.01). In addition, the Sal low-dose group also reversed some fibrosis and pyroptosis-related indicators to some extent. CONCLUSIONS Sal can significantly prevent the occurrence and development of myocardial fibrosis, and the mechanism of action may be related to the inhibition of TLR4-mediated pyroptosis pathway in myocardial tissue.

16.
Chinese journal of integrative medicine ; (12): 162-169, 2023.
Article in English | WPRIM | ID: wpr-971327

ABSTRACT

OBJECTIVE@#To investigate the effect of electroacupuncture (EA) at Neiguan (PC 6) on myocardial fibrosis in spontaneously hypertensive rats (SHRs), and to explore the contribution of interleukin-1 β (IL-1 β), insulin-like growth factor 1 (IGF-1), and transforming growth factor β 1 (TGF- β 1) to the effects.@*METHODS@#Nine 12-weeks-old Wistar Kyoto (WKY) male rats were employed as the normal group. Twenty-seven SHRs were equally randomized into SHR, SHR+EA, and SHR + sham groups. EA was applied at bilateral PC 6 once a day 30 min per day in 8 consecutive weeks. After 8-weeks EA treatment at PC 6, histopathologic changes of collagen type I (Col I), collagen type 1 (Col 1) and the levels of IGF-1, 1L-1 β, TGF- β 1, matrix metalloproteinase (MMP)-2 and MMP-9 were examined in myocardial tissure respectively.@*RESULTS@#After 8-weeks EA treatment at PC 6, the enhanced myocardial fibrosis in SHRs were characterized by the increased mean fluorescence intensity of Col I and Col 1 in myocardium tissue (P<0.01). All these abnormal alterations above in SHR + EA group was significantly lower compared with the SHR group (P<0.01). Meanwhile, the increased levels of IL-1 β, IGF-1, TGF-β 1 in serum or myocardial tissue of SHRs, diminished MMP 9 mRNA expression in SHRs were also markedly inhibited after 8 weeks of EA treatment (P<0.05 or P<0.01). Furthermore, the contents of IL-1 β, IGF-1, TGF-β 1 in myocardial tissue were positively correlated with the systolic blood pressure and hydroxyproline respectively (P<0.01).@*CONCLUSION@#EA at bilateral PC 6 could ameliorate cardiac fibrosis in SHRs, which might be mediated by regulation of 1L-1 β/IGF-1-TGF- β 1-MMP9 pathway.


Subject(s)
Rats , Animals , Male , Rats, Inbred WKY , Electroacupuncture , Hypertension/therapy , Insulin-Like Growth Factor I , Interleukin-1beta , Rats, Inbred SHR , Essential Hypertension , Myocardium/pathology , Collagen Type I , Fibrosis
17.
Chinese journal of integrative medicine ; (12): 119-126, 2023.
Article in English | WPRIM | ID: wpr-971326

ABSTRACT

OBJECTIVE@#To study effects of Shenmai Injection on hypertensive heart failure and its mechanism for inhibiting myocardial fibrosis.@*METHODS@#Salt-sensitive (Dahl/SS) rats were fed with normal diet (0.3% NaCl) and the high-salt diet (8% NaCl) to observe the changes in blood pressure and heart function, as the control group and the model group. Salt-insensitive rats (SS-13BN) were fed with the high-salt diet (8% NaCl) as the negative control group. After modeling, the model rats were randomly divided into heart failure (HF) group, Shenmai Injection (SMI) group and pirfenidone (PFD) group by a random number table, with 6 rats in each group. They were given sterilized water, SMI and pirfenidone, respectively. Blood pressure, cardiac function, fibrosis and related molecular expression were detected by sphygmomanometer, echocardiogram, enzyme linked immunosorbent assay (ELISA), hematoxylin-eosin staining, Masson staining, immunofluorescence and qPCR analysis.@*RESULTS@#After high-salt feeding, compared with the control and negative control group, in the model group the blood pressure increased significantly, the left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) were significantly reduced, and the serum NT-proBNP concentration increased significantly (all P<0.05); furthermore, the arrangement of myocardial cells was disordered, the edema was severe, and the degree of myocardial fibrosis was also significantly increased (P<0.05); the protein and mRNA expressions of collagen type I (Col I) were up-regulated (P<0.05), and the mRNA expressions of transforming growth factor β 1 (TGF- β 1), Smad2 and Smad3 were significantly up-regulated (P<0.05). Compared with HF group, after intervention of Shenmai Injection, LVEF and LVFS increased, myocardial morphology was improved, collagen volume fraction decreased significantly (P<0.05), and the mRNA expressions of Col I, TGF- β 1, Smad2 and Smad3, as well as Col I protein expression, were all significantly down-regulated (all P<0.05).@*CONCLUSION@#Myocardial fibrosis is the main pathological manifestation of hypertensive heart failure, and Shenmai Injection could inhibit myocardial fibrosis and effectively improve heart failure by regulating TGF-β 1/Smad signaling pathway.


Subject(s)
Rats , Animals , Stroke Volume , Sodium Chloride , Rats, Inbred Dahl , Ventricular Function, Left , Heart Failure , Transforming Growth Factor beta1/metabolism , Hypertension , Fibrosis , RNA, Messenger
18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 21-29, 2023.
Article in Chinese | WPRIM | ID: wpr-975152

ABSTRACT

ObjectiveTraditional Chinese medicine, namely Dahuang Zhechongwan (DHZCW) was used to treat myocardial fibrosis in model rats, observe its effect on myocardial fibrosis in rats, and explore its action mechanism. MethodThirty-six SPF male Kunming rats were divided into blank group, model group, low-, medium-, high-dose groups of DHZCW (0.056, 0.084, 0.168 g·kg-1), captopril group (10 mg·kg-1), with six rats in each group. Except for the blank group, the other groups were intraperitoneally injected isoproterenol solution of 5 mg·kg-1 for 15 consecutive days to replicate the myocardial fibrosis model. At the beginning of modeling, the rats in each group took drugs, and they were sacrificed 28 days after administration. Serum and heart tissue were collected for the corresponding detection. Hematoxylin-eosin (HE) staining and Masson staining were used to observe tissue inflammation, cellular degeneration, necrosis, and fibrosis. The contents of hydroxyproline (HYP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), hyaluronic acid (HA), laminin (LN), type-Ⅲ procollagen (PC Ⅲ) in serum of rats and rats were determined by enzyme-related immunosorbent assay (ELISA). The expression levels of key pathway proteins transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA), Smad2, Smad3, and Smad7 were detected by Western blot. The expression levels of key pathway genes TGF-β1, α-SMA, Smad2, Smad3, Smad7, miR-29a-5p, miR-29b-2-5p, and miR-29c-5p were detected by Real-time quantitative polymerase chain reaction (Real-time PCR). ResultCompared with the blank group, the pathological changes of fibrosis in the model group were obvious, the contents of serum HYP, TNF-α, IL-1β, IL-6, HA, LN, and PCⅢ were increased (P<0.01), the protein expression levels of TGF-β1, α-SMA, Smad2, and Smad3 were increased; the protein expression level of Smad7 was decreased (P<0.01). The mRNA expression levels of TGF-β1, α-SMA, Smad2, and Smad3 were increased (P<0.05, P<0.01), while those of Smad7, miR-29a-5p, miR-29b-2-5p, and miR-29c-5p were decreased (P<0.01). Compared with the model group, after 28 days of administration, serum HYP, TNF-α, IL-1β, IL-6, HA, LN, and PCⅢ in high-, medium-, and low-dose groups of DHZCW and captopril groups were decreased (P<0.01). Except for the low-dose group, the protein contents of TGF-β1, α-SMA, Smad2, and Smad3 were decreased, while the protein content of Smad7 was increased (P<0.01). The mRNA expression levels of TGF-β1, Smad2, α-SMA, and Smad3 in high-dose group of DHZCW were decreased (P<0.05,P<0.01), while those of Smad7, miR-29a-5p, miR-29b-2-5p, and miR-29c-5p were increased (P<0.05). The mRNA expressions of TGF-β1, Smad2, and Smad3 in the medium-dose group of DHZCW were decreased (P<0.05, P<0.01), while mRNA expression of Smad7 was increased (P<0.01). The mRNA levels of TGF-β1 and Smad2 in the low-dose group of DHZCW were decreased (P<0.01). ConclusionDHZCW can improve myocardial fibrosis in rats, and its action mechanism may be related to the regulation of the TGF-β1/Smads/miR-29 pathway. In addition, there is dose dependence in the range of 0.056-0.168 g·kg-1, and the effect of the high-dose group is more stable.

19.
Journal of Pharmaceutical Practice ; (6): 478-484, 2023.
Article in Chinese | WPRIM | ID: wpr-984556

ABSTRACT

Objective To investigate the effect and mechanism of astragaloside Ⅳ(AS-Ⅳ) activating ROCK/JNK to regulate autophagy in improving isoproterenol (ISO) induced myocardial fibrosis (MF) in mice. Methods The mice were randomly divided into control operation group (Control group), ISO induced myocardial fibrosis group (MF group), AS-Ⅳ treatment group (AS-Ⅳ group) and combination group of astragaloside IV and Y-33075 (ROCK inhibitor) (astragaloside IV+Y-33075 group). After repeated administration for 30 days. The serum levels of LDH, BNP, CTGF in each group were detected. The cardiac function was detected by ultrasound. Myocardial structure and tissue fibrosis degree in each group were detected by Sirius Red and Masson staining. Oxidative stress (ROS) levels in myocardial tissue of each group were detected by DHE staining and the expression of ROCK, JNK, Atg5, Beclin 1, and LC3 Ⅰ/Ⅱ in myocardial tissue were detected by Western blotting. Results Compared with AS-Ⅳ group, the EF value of AS-Ⅳ+Y-33075 group decreased and the degree of myocardial fibrosis increased (P<0.05). The serum level of LDH, BNP, CTGF increased and the level of ROS in myocardial tissue increased while the expression of ROCK, JNK, Atg5, Beclin 1, LC3 Ⅰ/Ⅱ decreased (P<0.05). Y-33075 could block the protective effect of AS-Ⅳ on myocardial injury induced by MF and inhibit the regulation of AS-Ⅳ on ROCK and JNK. Conclusion AS-Ⅳ could attenuate myocardial fibrosis in mice by activating ROCK/JNK signal and promoting autophagy.

20.
China Journal of Chinese Materia Medica ; (24): 5838-5850, 2023.
Article in Chinese | WPRIM | ID: wpr-1008782

ABSTRACT

Jiming Powder is a traditional ancient prescription with good therapeutic effect in the treatment of heart failure, but its mechanism lacks further exploration. In this study, a mouse model of coronary artery ligation was used to evaluate the effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction. The study constructed a mouse model of heart failure after myocardial infarction using the method of left anterior descending coronary artery ligation. The efficacy of Jiming Powder was evaluated from multiple angles, including ultrasound imaging, hematoxylin-eosin(HE) staining, Masson staining, Sirius Red staining, and serum myocardial enzyme spectrum detection. Western blot analysis was performed to detect key proteins involved in ventricular remodeling, including transforming growth factor-β1(TGF-β1), α-smooth muscle actin(α-SMA), wingless-type MMTV integration site family member 3a(Wnt3a), β-catenin, matrix metallopeptidase 2(MMP2), matrix metallopeptidase 3(MMP3), TIMP metallopeptidase inhibitor 1(TIMP1), and TIMP metallopeptidase inhibitor 2(TIMP2). The results showed that compared with the model group, the high and low-dose Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVID;s) and diastole(LVID;d), increased the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improved cardiac function in mice after myocardial infarction, and effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactic dehydrogenase(LDH), thus protecting ischemic myocardium. HE staining showed that Jiming Powder could attenuate myocardial inflammatory cell infiltration after myocardial infarction. Masson and Sirius Red staining demonstrated that Jiming Powder effectively inhibited myocardial fibrosis, reduced the collagen Ⅰ/Ⅲ ratio in myocardial tissues, and improved collagen remodeling after myocardial infarction. Western blot results showed that Jiming Powder reduced the expression of TGF-β1, α-SMA, Wnt3a, and β-catenin, decreased the levels of MMP2, MMP3, and TIMP2, and increased the level of TIMP1, suggesting its role in inhibiting cardiac fibroblast transformation, reducing extracellular matrix metabolism in myocardial cells, and lowering collagen Ⅰ and α-SMA content, thus exerting an anti-myocardial fibrosis effect after myocardial infarction. This study revealed the role of Jiming Powder in improving ventricular remodeling and treating myocardial infarction, laying the foundation for further research on the pharmacological effect of Jiming Powder.


Subject(s)
Mice , Animals , Transforming Growth Factor beta1/metabolism , Matrix Metalloproteinase 2/metabolism , beta Catenin/metabolism , Matrix Metalloproteinase 3/therapeutic use , Powders , Ventricular Remodeling , Stroke Volume , Ventricular Function, Left , Myocardial Infarction/drug therapy , Myocardium/pathology , Heart Failure/metabolism , Collagen/metabolism , Creatine Kinase , Fibrosis
SELECTION OF CITATIONS
SEARCH DETAIL