Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Neuroscience Bulletin ; (6): 1439-1453, 2023.
Article in English | WPRIM | ID: wpr-1010625

ABSTRACT

In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.


Subject(s)
Humans , Nitric Oxide Synthase Type I/metabolism , Adaptor Proteins, Signal Transducing , Brain/metabolism , Nervous System Diseases
2.
Neuroscience Bulletin ; (6): 1-15, 2023.
Article in English | WPRIM | ID: wpr-982469

ABSTRACT

In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.

3.
Acta Pharmaceutica Sinica ; (12): 638-644, 2019.
Article in Chinese | WPRIM | ID: wpr-780148

ABSTRACT

In ischemic stroke, increased level of neuronal complex of nitric oxide synthase (nNOS)-postsynaptic density protein-95 (PSD-95) plays an important role in neuronal damage. We aimed to establish a screening model to identify compounds capable of uncoupling nNOS interaction with PSD-95. In this model, human embryonic kidney-293T (HEK-293T) cells were transfected with either pCDH-Flag-nNOS or pcDNA3.1-PSD-95 plasmid to obtain the protein of Flag-nNOS or PSD-95. Incubating Flag-nNOS with PSD-95 causes formation of the nNOS-PSD-95 complex. ZL006, a known uncoupler of nNOS-PSD-95 interaction, can disturb the interaction between Flag-nNOS and PSD-95, serving as a positive control. The method coupling antibodies to magnetic beads with glutaraldehyde was used to decrease the cost and increase the efficiency. To establish that our model is suitable for selecting nNOS-PSD-95 uncouplers, we evaluated the ability of IC87201, another reported uncoupler of nNOS-PSD-95 interaction, and structural analogs of ZL006. IC87201 and one structure analog of ZL006 showed uncoupling effect, supporting that our model can be used to select different types uncoupler blocking nNOS-PSD-95 interaction.

4.
China Journal of Chinese Materia Medica ; (24): 748-754, 2018.
Article in Chinese | WPRIM | ID: wpr-771673

ABSTRACT

Magnetic molecularly imprinted polymers(MMIPs) were prepared with ZL006 as template, acrylamide(AA) as the functional monomer, and acetonitrile as pore-forming agent; then Fourier transform infrared spectroscopy(FT-IR) and scanning electron microscopy(SEM) were used to characterize their forms and structures. Simultaneously, the MMIPs prepared previously were used as sorbents for dispersive magnetic solid phase extraction(DSPE) to capture and identify potential nNOS-PSD-95 uncouplers from extracts of Trifolium pratense and the the activities of the screened compounds were evaluated by the neuroprotective effect and co-immunoprecipitation test. The experiment revealed that the successfully synthesized MMIPs showed good dispersiveness, suitable particle size and good adsorption properties. Formononetin, prunetin and biochanin A were separated and enriched from Trifolium pratense by using the MMIPs as artificial antibodies and finally biochanin A was found to have higher cytoprotective action and uncoupling action according to the neuroprotective effect and co-immunoprecipitation test.


Subject(s)
Adsorption , Genistein , Chemistry , Molecular Imprinting , Phytochemicals , Chemistry , Polymers , Chemistry , Solid Phase Extraction , Spectroscopy, Fourier Transform Infrared , Trifolium , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL