Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Chinese Herbal Medicines ; (4): 638-642, 2022.
Article in Chinese | WPRIM | ID: wpr-953565

ABSTRACT

Objective: To isolate and identify the undescribed compounds from the fruits of Cinnamomum migao and evaluate its nitric oxide inhibition potential. Methods: The chromatographic techniques of silica gel, Sephadex, and HPLC were used for isolation and purification of the compounds, while HR-ESI-MS, 1D NMR, 2D NMR, ECD, and X-ray diffraction techniques were used to characterize and confirm the isolated compounds. Moreover, the anti-inflammatory activity of the isolated compounds was carried out to check inhibitory potential against the production of nitric oxide with RAW264.7 cells stimulated by LPS. Results: Camganoid A (1), a novel sesquiterpene possessing an unprecedented skeleton, and camganoid B (2), containing a unique eight-membered sesquiterpene moiety with a new carbon skeleton, were isolated and identified from the fruits of C. migao. The absolute configurations of 1 and 2 were confirmed by single crystal X-ray diffraction and electronic circular dichroism (ECD) calculations. Among these compounds, compound 1 exhibited potent inhibitory activity against the production of nitric oxide with IC

2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 463-466, 2017.
Article in English | WPRIM | ID: wpr-812093

ABSTRACT

The present study was designed to investigate the chemical constituents of the roots of Cyathula officinalis. Compounds were isolated by silica gel, Sephadex LH-20, ODS column chromatography, and preparative HPLC. Their structures were determined on the basis of 1D and 2D NMR techniques, mass spectrometry, and chemical methods. One new oleanane-type triterpenoid saponin, 28-O-[α-L-rhamnopyranosyl-(1→3)-β-D-glucuronopyranosyl-(1→3)-β-D-glucopyranosyl] hederagenin (1), was isolated from the roots of Cyathula officinalis. The anti-inflammatory activities of the isolates were evaluated for their inhibitory effects against LPS-induced nitric oxide (NO) production in RAW 264.7 macrophages cells. Compounds 2, 4, and 6 exhibited moderate anti-inflammatory activities.


Subject(s)
Animals , Mice , Amaranthaceae , Chemistry , Anti-Inflammatory Agents , Cells, Cultured , Magnetic Resonance Spectroscopy , Nitric Oxide , Plant Roots , Chemistry , Saponins , Chemistry , Pharmacology , Triterpenes , Chemistry , Pharmacology
3.
Braz. j. med. biol. res ; 42(12): 1196-1202, Dec. 2009. ilus, tab
Article in English | LILACS | ID: lil-532292

ABSTRACT

In the present study, we investigated the effects of acute intracerebroventricular (icv) insulin administration on central mechanisms regulating urinary sodium excretion in simultaneously centrally NG-nitro-L-arginine methylester (L-NAME)-injected unanesthetized rats. Male Wistar-Hannover rats were randomly assigned to one of five groups: a) icv 0.15 M NaCl-injected rats (control, N = 10), b) icv dose-response (1.26, 12.6 and 126 ng/3 µL) insulin-injected rats (N = 10), c) rats icv injected with 60 µg L-NAME in combination with NaCl (N = 10) or d) with insulin (N = 10), and e) subcutaneously insulin-injected rats (N = 5). Centrally administered insulin produced an increase in urinary output of sodium (NaCl: 855.6 ± 85.1 Ä percent/min; 126 ng insulin: 2055 ± 310.6 Ä percent/min; P = 0.005) and potassium (NaCl: 460.4 ± 100 Ä percent/min; 126 ng insulin: 669.2 ± 60.8 Ä percent/min; P = 0.025). The urinary sodium excretion response to icv 126 ng insulin microinjection was significantly attenuated by combined administration of L-NAME (126 ng insulin: 1935 ± 258.3 Ä percent/min; L-NAME + 126 ng insulin: 582.3 ± 69.6 Ä percent/min; P = 0.01). Insulin-induced natriuresis occurred by increasing post-proximal sodium excretion, despite an unchanged glomerular filtration rate. Although the rationale for decreased urinary sodium excretion induced by combined icv L-NAME and insulin administration is unknown, it is tempting to suggest that perhaps one of the efferent signals triggered by insulin in the CNS may be nitrergic in nature.


Subject(s)
Animals , Male , Rats , Brain/enzymology , Insulin/pharmacology , Natriuresis/drug effects , Nitric Oxide Synthase/antagonists & inhibitors , Injections, Intraventricular , Insulin/administration & dosage , Microinjections , NG-Nitroarginine Methyl Ester/administration & dosage , Random Allocation , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL