Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Chinese Journal of Blood Transfusion ; (12): 1072-1078, 2021.
Article in Chinese | WPRIM | ID: wpr-1004299

ABSTRACT

【Objective】 To investigate the removal efficacy of inflammatory cytokines and blood compatibility of modified PBTNF. 【Methods】 Acrylic acid (AA) was firstly UV-grafted onto the surface of PBTNF to negatively charge the surface of the material. Subsequently, the three positively charged polyelectrolytes, DA, PEI, and CS were respectively electrostatic self-assembled with GO on the surface of PBTNF, forming two layers of film with GO as the outer layer: PBTNF-(DA/GO)2, PBTNF-(PEI/GO)2, PBTNF-(CS/GO)2. 【Results】 Scanning electron microscopy results showed that compared with the PBTNF grafted with AA, the adhesion of particles was observed on the surface of the three modified materials, and the photo shows that the color of the material surface was deepened after electrostatic self-assembly. The results of wettability showed that the surface hydrophilicity was significantly improved, indicating that the electrostatic self-assembled membrane was successfully immobilized on the surface of PBTNF. The removal efficiency (%) of IL-1β for PBTNF-(DA/GO)2, PBTNF-(PEI/GO)2 and PBTNF-(CS/GO)2 were 69.00±7.36 vs -2.35±2.69 vs -1.59±3.26 (P<0.05). The removal efficiency of IL-6 (%) were 40.15±1.86 vs -13.46±5.72 vs -1.21±3.41 (P<0.05). The removal efficiency of IL-8 (%) were 96.90±0.97 vs 17.84±11.74 vs 43.68±17.38 (P<0.05). The removal efficiency of TNF-α (%) was 44.46±2.50 vs 14.90±7.12 vs 20.64±1.22 (P<0.05). Plasma protein adsorption results (total protein, immunoglobulin G, albumin) and red blood cell deformability index showed that there was no statistical difference among the three modified PBTNFs and the control group (P>0.05). Although the red blood cell osmotic fragility (g/L) of the three modified PBTNFs is higher than that of the former: control group vs PBTNF-(DA/GO)2 vs PBTNF-(PEI/GO)2 vs PBTNF-(CS/GO)2: 4.39±0.05 vs 4.62±0.02 vs 4.48±0.03 vs 4.90±0.03 (P<0.05), the hemolysis rate (%) of them were all less than 5%, and PBTNF-(DA/GO)2 performed the lowest hemolysis rate which was (0.03±0.01)% (compared with PBTNF-(PEI/GO)2, P<0.05). The coagulation function test results showed that compared with the control group, the fibrinogen (g/L) of the three modified PBTNFs had no statistical difference (P>0.05); the activated partial thrombo plastin time (S) slightly extended, but all within the normal range of clinical standard; and the prothrombin time (S) of PBTNF-(CS/GO)2 was prolonged(P<0.05). 【Conclusion】 Among the three positively charged polyelectrolytes, including DA, PEI, and CS, PBTNF-(DA/GO)2 performed the best removal rate of inflammatory cytokines, and the blood compatibility evaluation results showed that PBTNF-(DA/GO)2 had no significant effect on red blood cells and coagulation function. Consequently, in the study of inflammatory cytokines adsorption, DA is expected to be the optimal polyelectrolyte assembling with GO for further research.

2.
J Biosci ; 2014 Dec; 39 (5): 785-794
Article in English | IMSEAR | ID: sea-161993

ABSTRACT

Ulocladium atrum inulinase was immobilized on different composite membranes composed of chitosan/nonwoven fabrics. Km values of free and immobilized U. atrum inulinase on different composite membranes were calculated. The enzyme had optimum pH at 5.6 for free and immobilized U. atrum inulinase on polyester nonwoven fabric coated with 3% chitosan solution (PPNWF3), but optimum pH was 5 for immobilized U. atrum inulinase on polyester and polypropylene nonwoven fabrics coated with 1% chitosan solution. The enzyme had optimum temperature at 40°C for immobilized enzyme on each of polyester and polypropylene composite membranes coated with 1% chitosan, while it was 50°C for free and immobilized enzyme on polypropylene nonwoven fabric coated with 3% chitosan solution. Free U. atrum inulinase was stable at 40°C but thermal stability of the immobilized enzyme was detected up to 60°C. Reusability of immobilized enzyme was from 38 to 42 cycles of reuse; after this, the immobilized enzyme lost its activity completely. In conclusion, immobilized U. atrum inulinase was considerably more stable than the free enzyme, and could be stored for extended periods.

SELECTION OF CITATIONS
SEARCH DETAIL