Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 702
Filter
1.
Journal of Modern Urology ; (12): 73-80, 2024.
Article in Chinese | WPRIM | ID: wpr-1031573

ABSTRACT

【Objective】 To explore the effects and mechanism of p38 mitogen activated protein kinase (MAPK) pathway on the formation of calcium oxalate (CaOx) kidney stones in rats,so as to provide new ideas for the treatment of kidney stones. 【Methods】 A total of 40 rats were divided into control, SB203580, CaOx and SB203580+CaOx groups, with 10 rats in each group.Intragastric administration of a mixture of 1% ethylene glycol and 1% ammonium chloride was given to the CaOx and SB203580+CaOx groups to construct CaOx models, while intragastric administration of drinking water was given to the control and SB203580 groups.After molding, SB203580 and SB203580+CaOx groups were injected with 5 mg/kg SB203580 peritoneally once a day for 14 days, while the control and CaOx groups were injected with equal volume of normal saline.The renal mass of rats was measured and the renal coefficient was calculated; the serum levels of blood urea nitrogen (BUN) and serum creatinine (SCr) were measured with an automated biochemical analyzer; the urinary levels of neutrophil gelatinase-associated lipid carrier protein (NGAL) and kidney injury molecule-1 (KIM-1) were determined with enzyme-linked immunosorbent assay (ELISA); the crystal deposition and tissue damage in renal tissues were observed with Von Kossa staining; the apoptosis of renal tubule cells was observed with TUNEL; the expressions of autophagy markers in kidney tissues were detected with immunohistochemical staining; the molecular expressions of autophagy-endoplasmic reticulum stress related pathways in renal tissues were determined with RT-qPCR and Western blot. 【Results】 Compared with the CaOx group, the SB203580+CaOx group had increased body mass after molding (P<0.05); decreased kidney mass, kidney coefficient, BUN, SCr, NGAL and KIM-1 levels (P<0.05); alleviated pathological damage of kidney tissues; significantly reduced black crystal; down-regulated proportion of positive TUNEL cells, positive expression area of LC3B and Beclin-1, mRNA expressions of LC3B, Beclin-1, CHOP and GRP78, protein ratio of LC3-Ⅱ/LC3-Ⅰ, and protein expressions of Beclin-1, CHOP and GRP78 (P<0.05); but up-regulated mRNA and protein expressions of p62 (P<0.05). 【Conclusion】 The p38 MAPK pathway is involved in the formation of CaOx kidney stones in rats.Inhibition of this pathway can reduce the formation of kidney stones, which may be related to the regulation of autophagy and endoplasmic reticulum stress.

2.
China Pharmacy ; (12): 1351-1356, 2024.
Article in Chinese | WPRIM | ID: wpr-1031712

ABSTRACT

OBJECTIVE To explore the effects and potential mechanism of evodiamine on inflammatory response and apoptosis of epithelial cells in asthma model rats. METHODS SD rats were separated into control group, model group, evodiamine low-dose group (10 mg/kg), evodiamine high-dose group (20 mg/kg), dexamethasone group (positive control, 0.5 mg/kg), epidermal growth factor (EGF) group [mitogen-activated protein kinase (MAPK) activator, 10 μg], evodiamine high-dose+EGF group (20 mg/kg evodiamine+10 μg EGF), with 10 rats in each group. Except for the control group, the other groups were sensitized by 3-point injection of 10% ovalbumin(OVA)-aluminium hydroxide mixture and stimulated by inhalation of 2%OVA nebulized liquid to establish an asthma model. The count of inflammatory cells (macrophages and lymphocytes) in bronchoalveolar lavage fluid (BALF) was detected in each group; pathological changes of lung tissue in rats were observed; the apoptosis of airway epithelial cells, the levels of serum inflammatory factors [tumor necrosis factor-α, interleukin-6 (IL-6) and IL-4], the expressions of pathway-related proteins p38 MAPK, phosphorylated p38 MAPK (p-p38 MAPK), signal transduction and transcription activating factor 1 (STAT1)] and apoptosis-related proteins [B cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax)] were all detected in lung tissue. RESULTS Compared with the control group, bronchial mucosal edema, thickening of alveolar septa and extensive infiltration of inflammatory cells were observed in the lung tissue of rats in the model group; the number of inflammatory cells, apoptosis rate of airway epithelial cells, the levels of inflammatory factors, p-38 MAPK/p-38 MAPK, and the protein expressions of Bax and STAT1 were increased significantly; the expressions of Bcl-2 protein and Bcl-2/Bax were reduced significantly (P<0.05). Compared with the model group, the pathological changes in lung tissues were alleviated to varying degrees in evodiamine low-dose and high-dose groups, and dexamethasone groups, and the above indicators were significantly reversed. However, the change trends of corresponding indicators in the EGF group were opposite to the above (P<0.05). EGF could significantly attenuate the effect of high-dose evodiamine on inflammatory response in asthmatic rats (P<0.05). CONCLUSIONS Evodiamine can relieve inflammatory reactions and inhibit the apoptosis of airway epithelial cells in asthmatic rats, the mechanism of which may be associated with inhibiting p38 MAPK/STAT1 signaling pathway.

3.
China Pharmacy ; (12): 1351-1356, 2024.
Article in Chinese | WPRIM | ID: wpr-1031734

ABSTRACT

OBJECTIVE To explore the effects and potential mechanism of evodiamine on inflammatory response and apoptosis of epithelial cells in asthma model rats. METHODS SD rats were separated into control group, model group, evodiamine low-dose group (10 mg/kg), evodiamine high-dose group (20 mg/kg), dexamethasone group (positive control, 0.5 mg/kg), epidermal growth factor (EGF) group [mitogen-activated protein kinase (MAPK) activator, 10 μg], evodiamine high-dose+EGF group (20 mg/kg evodiamine+10 μg EGF), with 10 rats in each group. Except for the control group, the other groups were sensitized by 3-point injection of 10% ovalbumin(OVA)-aluminium hydroxide mixture and stimulated by inhalation of 2%OVA nebulized liquid to establish an asthma model. The count of inflammatory cells (macrophages and lymphocytes) in bronchoalveolar lavage fluid (BALF) was detected in each group; pathological changes of lung tissue in rats were observed; the apoptosis of airway epithelial cells, the levels of serum inflammatory factors [tumor necrosis factor-α, interleukin-6 (IL-6) and IL-4], the expressions of pathway-related proteins p38 MAPK, phosphorylated p38 MAPK (p-p38 MAPK), signal transduction and transcription activating factor 1 (STAT1)] and apoptosis-related proteins [B cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax)] were all detected in lung tissue. RESULTS Compared with the control group, bronchial mucosal edema, thickening of alveolar septa and extensive infiltration of inflammatory cells were observed in the lung tissue of rats in the model group; the number of inflammatory cells, apoptosis rate of airway epithelial cells, the levels of inflammatory factors, p-38 MAPK/p-38 MAPK, and the protein expressions of Bax and STAT1 were increased significantly; the expressions of Bcl-2 protein and Bcl-2/Bax were reduced significantly (P<0.05). Compared with the model group, the pathological changes in lung tissues were alleviated to varying degrees in evodiamine low-dose and high-dose groups, and dexamethasone groups, and the above indicators were significantly reversed. However, the change trends of corresponding indicators in the EGF group were opposite to the above (P<0.05). EGF could significantly attenuate the effect of high-dose evodiamine on inflammatory response in asthmatic rats (P<0.05). CONCLUSIONS Evodiamine can relieve inflammatory reactions and inhibit the apoptosis of airway epithelial cells in asthmatic rats, the mechanism of which may be associated with inhibiting p38 MAPK/STAT1 signaling pathway.

4.
Chinese Journal of Pathophysiology ; (12): 221-229, 2024.
Article in Chinese | WPRIM | ID: wpr-1023868

ABSTRACT

AIM:To investigate whether crocin alleviates right ventricular injury induced by monocrotaline(MCT)in rats with pulmonary arterial hypertension(PAH),and to explore the underlying mechanisms.METHODS:Forty male SD rats were randomly divided into 4 groups:normal group,PAH group,crocin group and sildenafil group,with 10 rats in each group.The rats in PAH,crocin and sildenafil groups received subcutaneous injection of MCT(50 mg/kg)to establish the PAH model.Starting from the day of MCT injection,the rats in crocin group received crocin(200 mg/kg),the rats in sildenafil group received sildenafil(30 mg/kg),and those in PAH and normal groups were orally gavaged with an equal volume of saline once daily.After 4 weeks,measurements of right ventricular systolic pressure(RVSP),mean pulmonary artery pressure(mPAP),right ventricular hypertrophy index(RVHI)and right ventricular mass index(RVMI)were taken for the rats in each group.Tissue staining was conducted to observe pathological changes in the right ventricle,and the expression levels of inflammatory factors(IL-1β,IL-6 and TNF-α),the p38 MAPK/NF-κB inflammato-ry pathway,CCL2,CCR2,and the macrophage marker CD68 were assessed.RESULTS:Compared with PAH group,the rats in crocin and sildenafil groups exhibited significant reductions in RVSP,mPAP,RVHI and RVMI(P<0.05).Right ventricular tissue displayed no evident infiltration of inflammatory cells or proliferation of collagen fibers.The down-regulation of the p38 MAPK/NF-κB pathway and inflammatory factors(IL-1β,IL-6 and TNF-α)was significant(P<0.05).Additionally,the CCL2/CCR2 pathway and the infiltration of CD68+ macrophages were markedly decreased(P<0.05).CONCLUSION:Crocin effectively mitigates right ventricular damage in MCT-induced PAH rats,with its effica-cy comparable to that of sildenafil at the dosage utilized in this experiment.Some protective mechanisms of crocin may be attributed to its regulatory effects on inflammation.

5.
Chinese Journal of Pathophysiology ; (12): 317-325, 2024.
Article in Chinese | WPRIM | ID: wpr-1023879

ABSTRACT

AIM:To observe the effect of folic acid(FA)on C2C12 myoblast proliferation and differentia-tion,and to explore its mechanism.METHODS:During the proliferation stage,C2C12 myoblasts were treated with vari-ous concentrations of FA(0,2.5,5,10 and 20 μmol/L).The cell status was observed under a microscope,cell viability was detected using the MTT method,and cell proliferation was assessed using the EdU method.In the differentiation stage,C2C12 cells were divided into control(Ctrl)group(0 μmol/L FA)and FA group(10 μmol/L FA).On day 2 or 4 of differentiation,immunofluorescence staining and Western blot were employed to detect the expression of myoblast differen-tiation-related proteins,myoblast determination protein 1(MyoD),myogenin(MyoG)and myosin heavy chain(MyHC).The myotubule formation in each group was analyzed.On day 4 of differentiation,C2C12 cells were treated with FA for 0,1,3 and 6 h,and the protein levels of p-JNK,JNK,p-p38 MAPK and p38 MAPK at each time point were detected by Western blot.Additionally,C2C12 cells after 4-day differentiation were divided into Ctrl group,FA group,FA+ SP600125(specific inhibitor of JNK)group,and FA+SB203580(specific inhibitor of p38)group.The cells in FA+ SP600125 and FA+SB203580 groups were treated with 10 μmol/L SP600125 or SB203580 for 1 h,followed by treatment with 10 μmol/L FA for 24 h.The cells in FA group were treated with 10 μmol/L FA for 24 h,while the cells in Ctrl group were left untreated.The protein levels of p-JNK,JNK,p-p38 MAPK,p38 MAPK and MyHC were detected by Western blot.RESULTS:(1)Compared with 0 μmol/L FA group,the number of the cells in other concentration groups in-creased,cell viability was raised(P<0.05 or P<0.01),and the rate of EdU positive cells increased(P<0.05).(2)Com-pared with Ctrl group,the expression levels of MyoD,MyoG and MyHC in FA group were increased(P<0.05),and the myotube fusion index was raised(P<0.05 or P<0.01).(3)Compared with 0 h group,the ratios of p-JNK/JNK and p-p38 MAPK/p38 MAPK were elevated after FA treatment for 1,3 and 6 h(P<0.05 or P<0.01),and showed a trend of gradual increase with the extension of treatment time.(4)After FA treatment,the ratios of p-JNK/JNK and p-p38 MAPK/p38 MAPK,and the expression of MyHC were elevated(P<0.01).Treatment with SP600125 decreased the ratio of p-JNK/JNK and the expression of MyHC(P<0.05),while SB203580 intervention cut down the ratio of p-p38 MAPK/p38 MAPK and the expression of MyHC(P<0.05 or P<0.01).CONCLUSION:Folic acid can promote the differentiation of C2C12 myoblasts by activating the JNK/p38 MAPK signaling pathway.

6.
Chinese Journal of Diabetes ; (12): 117-124, 2024.
Article in Chinese | WPRIM | ID: wpr-1025160

ABSTRACT

Objective To investigate the effect of Dapagliflozin on high glucose-induced podocyte proliferation and apoptosis through p38 mitogen-activated protein kinase(p38 MAPK)pathway.Methods Human glomerular podocytes(HGPC)were divided into control(Con)group,low/medium/high D-glucose(Glu 10,Glu 20,Glu 30)group,high glucose(HG)group,low/medium/high concentration Dapagliflozin(HG+Dap 12.5,HG+Dap 25,HG+Dap 50)group,Dapagliflozin(HG+Dap)group,inhibitor(HG+ SB 203580)group,Dapagliflozin + inhibitor(HG+Dap+SB 203580)group and Dapagliflozin + activator(HG+Dap+C16-PAF)group.After 24 hours of intervention,the cell viability,proliferation rate,apoptosis rate and levels of related factors were tested.Results Compared with Con group,IL-1β,TNF-α,apoptosis rate,Caspase-3 mRNA and protein expression,p53,p-p38 MAPK protein expression were increased(P<0.05),while cell proliferation rate,Cyclin D1 mRNA and protein expression were decreased in HG group(P<0.05).Compared with HG group,the proliferation rate,Cyclin D1 mRNA and protein expression were increased(P<0.05),while IL-1β,TNF-α,apoptosis rate,Caspase-3 mRNA and protein expression,p53,p-p38 MAPK protein expression were decreased in the HG+Dap and HG+SB 203580 groups(P<0.05).Compared with HG+Dap group,cell proliferation rate,Cyclin D1 mRNA and protein expression were increased(P<0.05),while IL-1β,TNF-α,apoptosis rate,Caspase-3 mRNA and protein expression,p53,p-p38 MAPK protein expression were decreased in HG+Dap+SB 203580 group(P<0.05).In HG+Dap+C16-PAF group,IL-1β,TNF-α,apoptosis rate,Caspase-3 mRNA and protein expression,p53,p-p38 MAPK protein expression were increased(P<0.05),while cell proliferation rate,Cyclin D1 mRNA and protein expression were decreased(P<0.05).Conclusion Dagagliflozin can promote HGPC proliferation and inhibit apoptosis and inflammation in high D-glucose environment,and its mechanism may be related to the inhibition of p38 MAPK pathway signal transduction.

7.
International Journal of Traditional Chinese Medicine ; (6): 451-457, 2024.
Article in Chinese | WPRIM | ID: wpr-1018328

ABSTRACT

Objective:To observe the effects of modified Xuanfuhua Decoction on pain behaviour and spinal cord neuroinflammation mediated by phosphorylated mitogen-activated protein kinase p38 (p38MAPK) signaling pathway in rats with sciatic nerve injury; To analyse the mechanism of its effects.Methods:Totally 108 SD rats were randomly divided into sham-operation group, model group, pregabalin group, decoction low-, medium- and high-dosage groups, with 18 rats in each group. The CCI model was established by ligation of sciatic nerve in other groups except sham-operation group. On the postoperative day, the decoction low-, medium-, high-dosage groups were gavaged with 2.5, 5.0 and 10.0 g/kg of modified Xuanfuhua Decoction concentrate, respectively. The pregabalin group was gavaged with 15 mg/kg of pregabalin. The sham-operation group and the model group were gavaged with equal amounts of saline once/d for 15 days. Pain behavioural assays were performed before, on the 3rd, 7th, 11th and 15th day of administration respectively. The levels of interleukin (IL)-1β, tumour necrosis factor-α (TNF-α), IL-10 were detected by ELISA method. The expressions of Toll-like receptor 4 (TLR4), nuclear factor-κB p65 (NF-κB p65) were detected by immunohistochemistry staining. The phosphorylated p38MAPK (p-p38MAPK) were measured in the spinal cord by Western blot.Results:Compared with the model group, the scores of spontaneous pain in decoction high-dosage group decreased ( P<0.05), the thermal foot shrinkage latency (TWL) was prolonged ( P<0.05), and the mechanical foot shrinkage reflex threshold (MWT) increased ( P<0.05); the levels of IL-1β and TNF-α in spinal cord tissue of decoction low-, medium- and high-dosage groups decreased ( P<0.05), the level of IL-10 increased ( P<0.05), the average gray values of TLR4 and NF-κB p65 in spinal cord decreased ( P<0.05), and the expression of P-P38MAPK protein decreased ( P<0.05). Conclusion:Modified Xuanfuhua Decoction can effectively improve neurogenic pain in CCI rats, and the mechanism may be related to inhibition of p38MAPK-TLR4 signaling pathway activation-mediated spinal cord neuroinflammation.

8.
Journal of Guangzhou University of Traditional Chinese Medicine ; (6): 735-741, 2024.
Article in Chinese | WPRIM | ID: wpr-1018410

ABSTRACT

Objective To observe the regulatory mechanism of drug-containing serum of Jinghou Zengzhi Prescription based on qi and blood replenishing method on the expression of growth and differentiation factor 9(GDF9)and apoptosis of ovarian granulosa cells in rats with controlled ovarian hyperstimulation(COH).Methods Serum of COH rats(blank serum)and serum of COH rats gavaged by the Jinghou Zengzhi Prescription were prepared.A COH rat model was established and ovarian granulosa cells were collected.The experiment was divided into 5 groups:blank serum group,drug-containing serum group,drug-containing serum+SB203580[p38 mitogen-activated protein kinase(p38MAPK)inhibitor]group,drug-containing serum + PDTC[nuclear transcription factor κB(NF-κB)inhibitor]group,drug-containing serum + SB203580 + PDTC group.The mRNA expression levels of p38MAPK,casein kinase 2(CK2),nuclear transcription factor κB inhibitor α(IκBα),NF-κB and GDF9 were detected by real-time quantitative polymerase chain reaction(qRT-PCR),and GDF9 protein expression level was detected by Western Blot,and ovarian granulosa cell apoptosis was detected by terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL).Results The drug-containing serum of Jinghou Zengzhi Prescription decreased the mRNA expressions of p38MAPK and NF-κB,elevated the mRNA expressions of CK2 and IκBα,increased the mRNA and protein expression levels of GDF9,and decreased the apoptosis rate of ovarian granulosa cells in COH rats.The addition of p38MAPK inhibitor SB203580 alone and the addition of NF-κB inhibitor PDTC alone both promoted the mRNA and protein expressions of GDF9 and reduced the apoptosis rate of granulosa cells.Conclusion The drug-containing serum of Jinghou Zengzhi Prescription based on qi and blood replenishing method can promote the expression of GDF9 and inhibit the apoptosis of ovarian granulosa cells in rats with COH,and its mechanism may be related to the regulation of the expression of genes of the dual signaling pathways of p38MAPK and NF-κB.

9.
Chinese Journal of Neuroanatomy ; (6): 43-49, 2024.
Article in Chinese | WPRIM | ID: wpr-1019635

ABSTRACT

Objective:To study the regulatory mechanism of p38 MAPK signaling pathway participate in hyperalge-sia reaction in Parkinson's disease(PD)rats model induced by 6-hydroxy dopamine(6-OHDA).Methods:Forty male Sprague Dawley(SD)rats were randomly divided into four groups:Sham group(Sham),model group(6-OHDA),p38 MAPK inhibitor SB203580 treatment group(6-OHDA+SB203580)and p38 MAPK activator anisomycin(ANS)treatment group(6-OHDA+ANS).PD model was established by intra-striatal injection of 6-OHDA stereotactically.6-OHDA+SB203580 and 6-OHDA+ANS groups was injected with 6-OHDA to establish PD model,and treated with inhibitor SB203580 or activator ANS respectively.The von Frey hairs were applied to measure the mechanical paw with-draw threshold(PWT)of rats.Enzyme linked immunosorbent assay(ELISA)was used to detect the content of IL-6,IL-1β,and TNF-α in rat dorsal root ganglion(DRG).The mRNA levels of genes IL-6,IL-1β,TNF-α,and p38 MAPK in rat DRG was detected by real time RT-PCR.Results:In the DRG of 6-OHDA included PD rats,the expres-sion levels of IL-6,IL-1β,TNF-α,and p38 MAPK were significantly increased(P<0.05),and the PWT of rats were significantly decreased(P<0.05).The application of activator ANS further increased the expression levels of IL-6,IL-1β,TNF-α,and p38 MAPK,and the PWT of rats were decreased.After application of inhibitor SB203580,the ex-pression levels of IL-6,IL-1β,TNF-α and p38 MAPK were significantly decreased in the DRG of rats(P<0.05),and the PWT were significantly increased in rats(P<0.05).Conclusion:6-OHDA induces mechanical hyperalgesia reaction in rats,and the molecular mechanism is related to activation of the p38 MAPK signalling pathway.

10.
World Science and Technology-Modernization of Traditional Chinese Medicine ; (12): 157-166, 2024.
Article in Chinese | WPRIM | ID: wpr-1019891

ABSTRACT

Objective To observe the effect of Shenghui Granule on EC and CA1 regions of scopolamine-induced dementia rats and explore its mechanism based on p38 MAPK signal pathway.Methods 40 SD rats were randomly divided into four groups(blank group,model group,Shenghui granule group,donepezil group),and were treated with scopolamine.Morris water maze and open field test were used to evaluate the cognition and anxiety behavior of rats.The nerve injury of EC and CA1 was observed by HE staining.The activity of neurons in EC and CA1 regions was observed by c-Fos immunofluorescence staining.Western blot was used to detect p38 MAPK pathway related proteins.Results The behavioral experiment found that Shenghui Granule could improve the cognitive impairment and anxiety-like behavior of AD model rats.The results of HE staining showed that Shenghui granules had protective effects on EC and CA1 regions.The results of c-Fos immunofluorescence staining showed that Shenghui granules could increase the activity of neurons in EC and CA1 regions.Western blot results showed that Shenghui Granule could down-regulate the expression of Bax,reduce the levels of phosphorylated p38 and Tau,and increase the expression of Bcl-2.Conclusion Shenghui granule has protective effect on EC and CA1 regions of AD model rats,and may play a therapeutic role through p38 MAPK signal pathway.

11.
The Journal of Practical Medicine ; (24): 918-923, 2024.
Article in Chinese | WPRIM | ID: wpr-1020850

ABSTRACT

Objective To explore the effects of Jinghou Zengzhi Granules(JHZZG),on ovarian GDF9 secretion and granulosa cells(GCs)apoptosis in controlled ovarian hyperstimulation(COH)rats through p38MAPK/CK2/IκBα/NF-κB pathway.Methods A model of COH rats was prepared and 18 rats were randomly divided into 3 groups,including natural ovulation group(NO group),COH group,and COH+JHZZG group.The expression of p38MAPK,CK2,IκBα,NF-κB,GDF9 mRNA and protein were detected by qRT-PCR and Western blot,and the apoptosis rate of ovarian GCs by TUNEL.Results Compared with the NO group,the expression of p38MAPK and NF-κB in the ovarian tissue of rats in the COH group increased,while the expression of CK2,IκBα and GDF9 decreased,and the apoptosis rate of ovarian GCs increased(all P<0.01).Compared with the COH group,the expression of p38MAPK and NF-κB in the ovarian tissue of rats in the COH+JHZZG group decreased,while the expression of CK2,IκBα and GDF9 increased(all P<0.01),and the apoptosis rate of ovarian GCs decreased(P<0.05).Conclusion Jinghou Zengzhi Granules could promote the secretion of ovarian GDF9 and inhibit the apoptosis of ovarian GCs of COH rats through p38MAPK/CK2/IκBα/NF-κB signaling pathway,which thereby improve the quality of COH oocytes.

12.
Chinese Journal of Tissue Engineering Research ; (53): 1149-1154, 2024.
Article in Chinese | WPRIM | ID: wpr-1021363

ABSTRACT

BACKGROUND:Overactive osteoclasts disrupt bone homeostasis and play a bad role in the pathological mechanisms of related skeletal diseases,such as osteoporosis,fragility fractures,and osteoarthritis.Studies have confirmed that ellagic acid and ellagtannin have the potential to inhibit osteoclast differentiation.As their natural metabolites,urolithin A has antioxidant,anti-inflammatory,anti-proliferative and anti-cancer effects,but its effect on osteoclast differentiation and its underlying molecular mechanisms remain unclear. OBJECTIVE:To explore the effect of urolithin A on osteoclast differentiation induced by receptor activator for nuclear factor-κB ligand and its mechanism. METHODS:Mouse mononuclear macrophage leukemia cells(RAW264.7)that grew stably were cultured in vitro.Toxicity of urolithin A(0,0.1,0.5,1.5,2.5 μmol/L)to RAW264.7 cells were detected by cytotoxic MTS assay to screen out the safe concentration.Different concentrations of urolithin A were used again to intervene with receptor activator for nuclear factor-κB ligand-induced differentiation of RAW264.7 cells in vitro.Then,tartrate-resistant acid phosphatase staining and F-actin ring and nucleus staining were performed to observe its effect on the formation and function of osteoclasts.Finally,the expressions of urolithin A on upstream and downstream genes and proteins in the MAPK signaling pathway were observed by western blot and RT-qPCR assays. RESULTS AND CONCLUSION:Urolithin A inhibited osteoclast differentiation and F-actin ring formation in a concentration-dependent manner and 2.5 μmol/L had the strongest inhibitory effect.Urolithin A inhibited the mRNA expression of Nfatc1,Ctsk,Mmp9 and Atp6v0d2 and the protein synthesis of Nfatc1 and Ctsk,related to osteoclast formation and bone resorption.Urolithin A inhibited the activity of osteoclasts by downregulating the phosphorylation of p38 protein to inhibit the mitogen-activated protein kinase signaling pathway.

13.
Chinese Journal of Tissue Engineering Research ; (53): 3055-3060, 2024.
Article in Chinese | WPRIM | ID: wpr-1021656

ABSTRACT

BACKGROUND:Oxidative modification of high-density lipoprotein occurs in patients with polycystic ovary syndrome.However,the relationship between oxidized high-density lipoprotein and ovulation dysfunction and its mechanism are unknown. OBJECTIVE:To investigate the effect and potential mechanism of oxidized high-density lipoprotein on ovarian granulosa cell apoptosis. METHODS:Polycystic ovary syndrome rat model was established,then the high-density lipoprotein was harvested from the rat serum of heart blood.The degree of oxidation of the high-density lipoprotein was detected by high-density lipoprotein inflammation index assay,malondialdehyde assay and lipoprotein agarose gel electrophoresis assay.The normal rat ovarian granulosa cells were isolated and treated with high-density lipoprotein and oxidized high-density lipoprotein isolated from the model rat serum.Cell viability was detected by CCK-8 assay.Cell apoptosis was detected by flow cytometry.The generation of reactive oxygen species was detected by H2DCF-DA staining.The p38 signaling activity was detected by western blot assay.Ovarian granulosa cells were pretreated with reactive oxygen species inhibitors N-acetylcysteine,tetramethylpiperidine(Tempol)and p38 inhibitor SB203580,and then treated with oxidized high-density lipoprotein.Finally,cell apoptosis,reactive oxygen species production and p38 signaling activity were detected. RESULTS AND CONCLUSION:A portion of the high-density lipoprotein from the serum of polycystic ovary syndrome model rats affected oxidative modification.High-density lipoprotein and oxidized high-density lipoprotein isolated from the model rat serum inhibited granulosa cell viability and promoted apoptosis(all P<0.05).They promoted rat granulosa cell reactive oxygen species production and p38 activation(all P<0.05).N-acetylcysteine,Tempol and SB203580 reversed oxidized high-density lipoprotein induced granulosa cell apoptosis(all P<0.05).N-acetylcysteine and Tempol suppressed oxidized high-density lipoprotein-induced p38 activation(all P<0.05).SB203580 did not have a regulatory effect on reactive oxygen species production(P>0.05).In summary,polycystic ovary syndrome can promote partial oxidative modification of high-density lipoprotein.The oxidized high-density lipoprotein promotes rat granulosa cell apoptosis by the activation of the reactive oxygen species-initiated p38 signaling pathway.

14.
Chinese Journal of Tissue Engineering Research ; (53): 5048-5054, 2024.
Article in Chinese | WPRIM | ID: wpr-1021962

ABSTRACT

BACKGROUND:Mesenchymal stem cells possess characteristics such as rapid renewal,targeted homing,tissue repair,and immune regulation,which provide potential for the treatment of inflammatory diseases.In most inflammatory diseases,interleukin-1β is highly expressed.Both exogenous and endogenous mesenchymal stem cells unavoidably exist in an environment with high interleukin-1β concentration. OBJECTIVE:To study the interaction of interleukin-1β with mesenchymal stem cells in inflammatory environment and the mechanism of its influence on the migration and adhesion of mesenchymal stem cells to provide a theoretical basis for adjusting stem cell therapy strategies. METHODS:The first author searched for studies involving interleukin-1β enhancing migration and adhesion of mesenchymal stem cells by computer on CNKI,WanFang,VIP,PubMed,and Web of Science using search terms"interleukin-1β,mesenchymal stem cell,nuclear factor-κB,MAPK,ERK,p38,migration,adhesion"in Chinese and English.The literature tracing method was also used to search for some of the literature.Finally,65 articles were included in the review analysis. RESULTS AND CONCLUSION:(1)In the inflammatory environment,interleukin-1β can regulate the migration and adhesion ability of mesenchymal stem cells.This effect may be achieved by recruiting IRAK1 through interleukin-1RI and then activating TAK1 and IKK in turn.After IKK phosphorylation,nuclear factor-κB and ERK signaling pathways are activated or CXCR expression is upregulated through the p38 pathway to promote mesenchymal stem cell migration and adhesion.However,further standardized research needs to be carried out based on the genetic background of mesenchymal stem cells,the dose and processing time of interleukin-1β.(2)In vitro experiments using pre-stimulated mesenchymal stem cells with interleukin-1β can change the survival environment of mesenchymal stem cells and alter their secretion factors to make them develop towards a more anti-inflammatory direction.On the other hand,under the premise of producing higher levels of anti-inflammatory and pro-nutrient factors,extracted mesenchymal stem cell exosomes can exert anti-inflammatory effects.(3)It has been observed in various animal disease models that pre-stimulating mesenchymal stem cells with interleukin-1β regulates their immune regulation ability,thereby affecting the development and outcome of inflammation.However,this is limited to preclinical basic research only;further verification on efficacy and safety of stem cell therapy with interleukin-1β pre-treated mesenchymal stem cells is required in clinical settings.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-8, 2024.
Article in Chinese | WPRIM | ID: wpr-1003402

ABSTRACT

ObjectiveTo explore the therapeutic effect and mechanism of Guipitang on rats with myocardial ischemia. MethodFifty SD rats were divided into five groups: a control group, a model group, low and high-dose Guipitang (7.52, 15.04 g·kg-1) groups, and a trimetazidine group (0.002 g·kg-1). By intragastric administration of vitamin D3 and feeding rats with high-fat forage and injecting isoproterenol, the rat model of myocardial ischemia was established. After drug treatment of 15 d, an electrocardiogram (ECG) was performed to analyze the degree of myocardial injury. A fully automatic biochemical analyzer was used to detect the changes in the serum levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C). Hematoxylin-eosin (HE) staining and Masson staining were used to observe myocardial histopathological changes. TdT-mediated dUTP nick end labeling (TUNEL) staining was used to detect cardiomyocyte apoptosis. Western blot was adopted to detect the protein levels of extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-ERK1/2 (p-ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK (p-p38 MAPK), B-cell lymphoma-2 (Bcl-2)-associated X (Bax), Bcl-2, and cleaved cysteine aspartate proteolytic enzyme (cleaved Caspase-3). ResultCompared with the control group, the ECG S-T segment decreased in the model group. The serum levels of TC, TG, and LDL-C were increased significantly (P<0.05). The arrangement of myocardial tissue was disordered, and the proportion of cardiomyocyte apoptosis increased. The protein levels of cleaved Caspase-3, Bax, and p-p38 MAPK in the heart were increased, and the Bcl-2 expression was decreased (P<0.05). Compared with the model group, the S-T segment downward shift was restored in the low and high-dose Guipitang groups and trimetazidine group, and the levels of TC, TG, and LDL-C were decreased. The protein expression of cleaved Caspase-3 and Bax in the heart dropped, and p-p38 MAPK and p-ERK1/2 protein expressions increased significantly (P<0.05). The degree of myocardial injury was alleviated, and the proportion of cardiomyocyte apoptosis decreased. Bcl-2 protein expression was increased significantly in the low-dose Guipitang group (P<0.05). ERK1/2 and p38 MAPK proteins had no significant difference among different groups. ConclusionGuipitang could alleviate myocardial injury and inhibit cardiomyocyte apoptosis in rats by activating the expression of ERK1/2 and p38 MAPK.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 114-123, 2024.
Article in Chinese | WPRIM | ID: wpr-1005260

ABSTRACT

ObjectiveTo study whether Chaihu Longgu Mulitang can inhibit hypothalamic inflammation, mitigate anxiety-like behavior, and alleviate anxiety symptoms by regulating the p38 mitogen-activated protein kinase/nuclear factor-κB (p38 MAPK/NF-κB) signaling pathway in the rat model of generalized anxiety disorder (GAD). MethodTwelve out of 74 Wistar rats were randomly selected as the blank group, and the remaining rats were subjected to chronic restraint stress for the modeling of GAD. The open field test (OFT) and elevated Porteus maze test (PMT) were conducted 14 days after modeling to detect the anxiety-like behaviors. Sixty successfully modeled rats were selected and randomized into model, low-, medium-, and high-dose (6, 12, and 24 g·kg-1, respectively) Chaihu Longgu Mulitang, and diazepam (1 mg·kg-1) groups (n=12) and administrated with corresponding drugs for 14 consecutive days. OFT and PMT were then carried out to examine the anxiety-like behaviors of the rats. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in the hypothalamus and serum of rats were determined by the enzyme-linked immunosorbent assay (ELISA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR)was conducted to determine the mRNA levels of p38 MAPK, NF-κB p65, nuclear factor κB inhibitor α (IκBα), and ionized calcium binding adaptor molecule 1 (Iba-1). The protein levels of p38 MAPK, phosphorylated (p)-p38 MAPK, NF-κB p65, p-NF-κB p65, and IκBα in the hypothalamus of rats were determined by Western blot. The expression of Iba-1 in the hypothalamic microglia was detected by immunofluorescence assay. ResultCompared with the blank group, the model group had decreased body weight, scattered dark yellow fur, increased irritability, and preference to hibernation in the corner. In addition, the modeled rats showed increased edge movement distance and time in OFT (P<0.01) and decreased movement distance and time and the number of entries in the open arm in PMT (P<0.01). The modeling increased the fluorescence intensity of Iba-1 in paraventricular nucleus of hypothalamus (P<0.01), elevated the levels of IL-1β, IL-6, and TNF-α in the serum and hypothalamus (P<0.01), up-regulated the protein and mRNA levels of p38 MAPK, NF-κB p65, p-p38 MAPK, p-NF-κB p65, and Iba-1 (P<0.05, P<0.01), and down-regulated the protein and mRNA levels of IκBα (P<0.01) in the hypothalamus. Compared with the model group, medium- and high-dose Chaihu Longgu Mulitang and diazepam increased the body weight, improved the fur and behaviors, decreased the edge movement distance and time in OFT (P<0.05, P<0.01), and increased the movement distance and time in the open arm in PMT (P<0.05, P<0.01). Furthermore, they decreased the fluorescence intensity of Iba-1 in hypothalamic microglia (P<0.05, P<0.01), lowered the levels of IL-1β, IL-6, and TNF-α in the serum and hypothalamic tissue (P<0.05, P<0.01), down-regulated the mRNA and protein levels of p38 MAPK, NF-κB p65, p-p38 MAPK, p-NF-κB p65, and Iba-1 (P<0.05, P<0.01), and up-regulated the mRNA and protein levels of IκBα (P<0.05, P<0.01) in the hypothalamus. ConclusionChaihu Longgu Mulitang can mitigate anxiety-like behaviors and relieve anxiety in GAD rats by inhibiting the p38 MAPK/NF-κB signaling pathway and reducing the activation of microglia and the levels of pro-inflammatory cytokines in the hypothalamus.

17.
China Pharmacy ; (12): 198-203, 2024.
Article in Chinese | WPRIM | ID: wpr-1006178

ABSTRACT

OBJECTIVE To investigate the effects of echinacoside (ECH) on renal injury in uremia (URE) rats and its mechanism. METHODS URE model of the rat was established by 5/6 nephrectomy. Successfully modeled rats were grouped into uremia group (URE group), ECH low-dose [10 mg/(kg·d)] group, ECH medium-dose [20 mg/(kg·d)] group, ECH high-dose [40 mg/(kg·d)] group, ECH high-dose+anisomycin [p38 mitogen-activated protein kinase (p38 MAPK) pathway activator] group [ECH-H+Ani group, 40 mg/(kg·d) ECH +2 mg/(kg·d) anisomycin], with a sham operation group, 12 mice in each group. Each drug group was given corresponding ECH intragastrically, while ECH-H+Ani group was further injected with anisomycin via the tail vein, once a day, for 8 consecutive weeks. The serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, blood urea nitrogen (BUN), β2-microglobulin (β2-MG), serum creatinine (Scr), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), cystatin C (Cys-C) and 24 h urine protein (24 h UP) as well as the levels of malondialdehyde (MDA) and superoxide dismutase (SOD) activity in renal tissue were all detected; pathological changes of renal tissue were observed; the rate of positive expression of α-smooth muscle protein (α-SMA) and E-cadherin, and the phosphorylation of p38 MAPK and nuclear factor-κB (NF-κB) p65 were determined in renal tissue of rats. RESULTS Compared with URE group, glomerular swelling, damage and necrosis of renal tubular epithelial cells and inflammatory cell infiltration were relieved significantly in ECH groups. The renal injury score, levels of TNF-α, IL-1β, IL-6, BUN, Scr, β2-MG, 24 h UP, NGAL, KIM- 1, Cys-C and MDA, the positive expression rate of α-SMA in renal tissue, the phosphorylation of p38 MAPK and NF-κB p65 were decreased in dose-dependent manner, while SOD activity and the positive expression rate of E-cadherin were obviously increased in dose-dependent manner (P<0.05). Anisomycin significantly attenuated the improvement effect of high-dose ECH on renal injury in URE rats (P<0.05). CONCLUSIONS ECH may inhibit inflammation and oxidative stress, enhance renal function, and improve renal injury in uremic rats by inhibiting the activation of p38 MAPK/NF-κB signaling pathway.

18.
Chinese Journal of Traumatology ; (6): 42-52, 2024.
Article in English | WPRIM | ID: wpr-1009505

ABSTRACT

PURPOSE@#Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure. However, long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes. Given that neural stem cell (NSC) is a subpopulation of main regenerative cells in the central nervous system after injury, the effect of mannitol on NSC is still elusive. The present study aims to elucidate the role of mannitol in NSC proliferation.@*METHODS@#C57 mice were derived from the animal house of Zunyi Medical University. A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation. Initially, mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining. In order to investigate the impact of mannitol on NSC proliferation, both cell counting kit-8 assays and neurospheres formation assays were conducted. The in vitro effects of mannitol were examined at various doses and time points. In order to elucidate the role of Aquaporin 4 (AQP4) in the suppressive effect of mannitol on NSC proliferation, various assays including reverse transcription polymerase chain reaction, western blotting, and immunocytochemistry were conducted on control and mannitol-treated groups. Additionally, the phosphorylated p38 (p-p38) was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation. Finally, to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent (MAPK) signaling pathway in the observed inhibition of NSC proliferation by mannitol, SB203580 was employed. All data were analyzed using SPSS 20.0 software (SPSS, Inc., Chicago, IL). The statistical analysis among multiple comparisons was performed using one-way analysis of variance (ANOVA), followed by Turkey's post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test. Comparisons between 2 groups were determined using Student's t-test, if the data exhibited a normal distribution using a Shapiro-Wilk normality test. Meanwhile, data were shown as median and interquartile range and analyzed using the Mann-Whitney U test, if the data failed the normality test. A p < 0.05 was considered as significant difference.@*RESULTS@#Primary NSC were isolated from the mice, and the characteristics were identified using immunostaining analysis. Thereafter, the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8, neurospheres formation, and immunostaining of Nestin and Ki67 assays. During the process of mannitol suppressing NSC proliferation, the expression of AQP4 mRNA and protein was downregulated, while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction, immunostaining, and western blotting assays. Subsequently, the administration of SB203580, one of the p38 MAPK signaling pathway inhibitors, partially abrogated this inhibitory effect resulting from mannitol, supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.@*CONCLUSIONS@#Mannitol inhibits NSC proliferation through downregulating AQP4, while upregulating the expression of p-p38 MAPK.


Subject(s)
Humans , Animals , Mannitol/pharmacology , Brain Edema , Neural Stem Cells/metabolism , MAP Kinase Signaling System , p38 Mitogen-Activated Protein Kinases/pharmacology , Cell Proliferation
19.
China Pharmacy ; (12): 555-559, 2024.
Article in Chinese | WPRIM | ID: wpr-1012572

ABSTRACT

OBJECTIVE To study the effects of Phellodendron amurense polysaccharides (PAP) on improving gouty nephropathy (GN) in rats, and to investigate its mechanism primarily by interfering the p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor-κB(NF-κB)/tumor necrosis factor-α(TNF-α). METHODS Sixty rats were randomly divided into normal group (water), model group (water), allopurinol group (positive control, 20 mg/kg), PAP high-dose, medium-dose and low-dose groups (100, 50, 25 mg/kg, by raw material) after being stratified by body weight, with 10 rats in each group. Except for the normal group, the other groups were induced to construct GN model by giving 1 500 mg/kg potassium oxazinate and 100 mg/kg adenine intragastrically for 14 days. After modeling, the rats in each group were given relevant medicine/water intragastrically, once a day, for consecutive 28 days. After the last medication, the levels of biochemical parameters related to renal function [uric acid, creatinine (Cr), blood urea nitrogen (BUN), xanthine oxidase (XOD)] were detected in rats, and the histopathological changes in the rat kidney were observed. The protein expressions of monocyte chemoattractant protein-1(MCP-1),TNF-α and interleukin-6(IL-6) as well as the phosphorylation levels of p38 MAPK and NF-κB p65 protein were determined in renal tissue of rats. RESULTS Compared with the normal group, the model group suffered from the dilatation of renal tubules, structural damage to glomeruli, accompanied by inflammatory infiltration and fibrosis; the contents of uric acid, Cr, BUN and XOD, the protein expressions of MCP-1,TNF-α and IL-6 and the phosphorylation levels of p38 MAPK and NF-κB p65 protein were all increased significantly (P<0.05 or P<0.01). Compared with the model group, the pathological symptoms of renal tissue in rats had been improved to varying degrees in different dose groups of PAP; the contents of uric acid, Cr, BUN and XOD, protein expressions of MCP-1, TNF-α and IL-6, the phosphorylation levels of p38 MAPK and NF-κB p65 protein in PAP high-dose and PAP medium-dose groups were all decreased significantly (P<0.05 or P<0.01). CONCLUSIONS PAP exhibits an anti-GN effect, the mechanism of which may be associated with inhibiting the p38 MAPK/NF-κB/TNF-α signaling pathway.

20.
Chinese Pharmacological Bulletin ; (12): 573-581, 2024.
Article in Chinese | WPRIM | ID: wpr-1013656

ABSTRACT

Aim To explore the mechanism of action of Ruanmai decoction in treating atherosclerosis through network pharmacology. Methods The chemical components and targets of Ruanmai decoction were queried using TCMSP. Relevant targets for atherosclerosis were retrieved from DrugBank, GeneCards, OMIM, and TTD databases. The " Drug-Active Ingredient-Target" PPI network was constructed using Cyto-scape software. GO and KEGG enrichment analysis were performed using the David database. Molecular docking verification of key components with core targets was conducted using the Seesar software. Atherosclerosis mouse models were established by feeding ApoE mice with a high-fat diet, and Ruanmai decoction granules were administered orally. Aortic pathological sections were stained, blood lipids were measured, and immunofluorescence was used to detect Mac2 and YWHAZ protein expression. Western blot was used to detect p-p38MAPK and C-CASP3 protein expression. Results Ruanmai decoction screened a total of 72 active drug components corresponding to 168 target genes for the treatment of atherosclerosis. The targets were primarily enriched in biological processes related to lip-id metabolism, inflammation and immunity, oxidative stress, vascular endothelial function, cell proliferation and apoptosis, glycolysis, and ubiquitination. Signaling pathways such as МАРК, TNF, PDK-Akt, and IL-17 were also involved. Animal experiments verified that RMJ could regulate the p38MAPK signaling pathway by down-regulating key targets YWHAZ, p-p38MAPK, and C-CASP3, thereby reducing AS inflammation and inflammation-induced apoptosis. Conclusions Ruanmai decoction can inhibit the expression of YWHAZ and activate the p38MAPK signaling pathway, potentially improving vascular inflammation, lipid metabolism, oxidative stress, and other pathological processes by regulating the МАРК, TNF, PDK-Akt, and IL-17 signaling pathways, thus preventing and treating atherosclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL