Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Article in English | WPRIM | ID: wpr-110253

ABSTRACT

BACKGROUND/AIMS: Myenteric plexus interstitial cells of Cajal (ICC-MY) are involved in the generation of gut pacemaker activity and neuronal communication. We performed patch clamp on ICC-MY in situ to observe the changes of pacemaker activity in response to neural modulations. METHODS: A fresh longitudinal muscle with myenteric plexus (LMMP) from mouse jejunum was prepared. ICC-MY and ganglion neurons embedded in the layer of longitudinal muscles were targeted by patch clamping in whole-cell configuration in a model of current or voltage clamp. Neurogenic modulators were applied to evaluate their effects on ICC pacemaker activity. RESULTS: In situ ICC-MY showed spontaneous and rhythmical voltage oscillations with a frequency of 27.2 ± 3.9 cycles/min, amplitude of 32.6 ± 6.3 mV, and resting membrane potential of −62.2 ± 2.8 mV. In situ neurons showed electrically evocable action potential in single or multiple spikes. Pacemaker activity was modulated by neuronal activators through receiving a neuronal input. Application of tetrodotoxin depolarized pacemaker potentials in a dose dependent manner, and decreased the amplitude at tetrodotoxin 0.3 μM for about 40 ± 10%; capsaicin (1 μM) ameliorated ICC-MY K+ current for about 49 ± 14.8%; and, nitric oxide hyperpolarized pacemaker potential and decreased the amplitude and frequency. CONCLUSIONS: The in situ preparation patch clamp study further demonstrates that the pacemaker activity is an intrinsic property of ICC. The neurogenic activators change and shape pacemaker potential and activity in situ. LMMP preparation in situ patch clamp provides an ideal platform to study the functional innervation of the ICC and the enteric neural system, thereby, for evaluating the neural regulation of pacemaker activity, especially in disorder models.


Subject(s)
Animals , Mice , Action Potentials , Capsaicin , Constriction , Enteric Nervous System , Ganglion Cysts , Interstitial Cells of Cajal , Jejunum , Membrane Potentials , Muscles , Myenteric Plexus , Neurons , Nitric Oxide , Tetrodotoxin
2.
Article in English | WPRIM | ID: wpr-727379

ABSTRACT

Interstitial cells of Cajal (ICC) evoke pacemaker activities in many tissues. The purpose of this study was to investigate the relationship between interstitial cell and pacemaker activity in the human ureter through the recording of spontaneous contractions. Spontaneous contractions of eight circular and longitudinal smooth muscle strips of the human ureter to acetylcholine (ACh) and/or norepinephrine (NE) were observed. Human ureteral strips were divided into proximal and distal groups, and each group was subdivided into circular and longitudinal groups. The proximal group showed spontaneous activities of 3~4 times within 5 minutes in the longitudinal group. ACh (10(-4) M) augmented the frequency of the spontaneous contractions. The cumulative application of NE also augmented the frequency in a dose-dependent manner. The effects of NE application were inhibited by concomitant application of 10(-5) M glibenclamide. Receptor tyrosine kinase (c-kit) staining revealed abundant ICCs only in proximal tissues. Therefore, spontaneous contractions of the human ureter might be modulated by ICC in the proximal region, and the actions might be related with the activation of cholinergic and/or adrenergic system mediated by a glibenclamide-sensitive pathway.


Subject(s)
Humans , Acetylcholine , Contracts , Glyburide , Interstitial Cells of Cajal , Muscle, Smooth , Norepinephrine , Protein-Tyrosine Kinases , Ureter
3.
Article in English | WPRIM | ID: wpr-728407

ABSTRACT

Interstitial cells of Cajal (ICCs) are pacemakers in gastrointestinal tracts, regulating rhythmicity by activating nonselective cation channels (NSCCs). In the present study, we investigated the general characteristics and pH-mediated regulation of pacemaker activity in cultured interstitial cells of Cajal. Under voltage clamp mode and at the holding potential of -60 mV, the I-V relationships and difference current showed that there was no reversal potential and voltage-independent inward current. Also, when the holding potentials were changed from +20 mV to -80 mV with intervals of 20 mV, there was little difference in inward current. In pacemaker activity, the resting membrane potential (RMP) was depolarized (In pH 5.5, 23+/-1.5 mV depolarized) and the amplitude was decreased by a decrease of the extracellular pH. However, in case of increase of extracellular pH, the RMP was slightly hyperpolarized and the amplitude was decreased a little. The melastatin type transient receptor potential (TRPM) channel 7 has been suggested to be required for intestinal pacemaking activity. TRPM7 produced large outward currents and small inward currents by voltage ramps, ranging from +100 to -100 mV from a holding potential of -60 mV. The inward current of TRPM7 was dramatically increased by a decrease in the extracellular pH. At pH 4.0, the average inward current amplitude measured at -100 mV was increased by about 7 fold, compared with the current amplitude at pH 7.4. Changes in the outward current (measured at +100 mV) were much smaller than those of the inward current. These results indicate that the resting membrane potential of pacemaking activity might be depolarized by external acidic pH through TRPM7 that is required for intestinal pacemaking activity.


Subject(s)
Architectural Accessibility , Gastrointestinal Tract , Hydrogen-Ion Concentration , Interstitial Cells of Cajal , Membrane Potentials , Periodicity
4.
Yonsei med. j ; Yonsei med. j;: 223-230, 1991.
Article in English | WPRIM | ID: wpr-151498

ABSTRACT

Recent electrophysiological data have provided the evidences that background currents such as Na(+)-Ca2+ exchange can significantly modulate cardiac pacemaker activity. In this study, the effects of extracellular Na+ and Ca2+ concentrations on the pacemaker activity were investigated by measuring the intracellular Na+ activity (aiNa) with Na(+)-selective microelectrodes and the results are summarized as follows. 1) In the rabbit SA node, aiNa was 3.2 +/- 0.3 mM and mean MDP (maximal diastolic potential) was -63.3 +/- 1.4 mV. 2) Graded decreases of external Na+ concentration resulted in the loss of spontaneous beating, hyperpolarization and the decrease of aiNa. 3) An increase in extracellular Ca2+ concentration in low Na+ solution augmented the transient decrease of aiNa, about 3 minutes in low Na+ solution, until aiNa started to increase. 4) In low Na+ solution, which had extracellular Ca2+ concentration according to the calculation based on the equilibrium state of Na+-Ca2+ exchange, aiNa was continuously decreased. It was concluded that intracellular Na+ activity modulated by Na+-Ca2+ exchange could play an important role in the initiation of pacemaker potential.


Subject(s)
Female , Male , Rabbits , Action Potentials , Animals , Biological Transport , Calcium/metabolism , Electrophysiology , Pacemaker, Artificial , Sinoatrial Node/metabolism , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL